mattmartin14 commented on code in PR #1534:
URL: https://github.com/apache/iceberg-python/pull/1534#discussion_r1935754596


##########
pyiceberg/table/__init__.py:
##########
@@ -1064,6 +1064,125 @@ def name_mapping(self) -> Optional[NameMapping]:
         """Return the table's field-id NameMapping."""
         return self.metadata.name_mapping()
 
+    def merge_rows(self, df: pa.Table, join_cols: list
+                    ,merge_options: dict = {'when_matched_update_all': True, 
'when_not_matched_insert_all': True}
+                ) -> Dict:
+        """
+        Shorthand API for performing an upsert/merge to an iceberg table.
+        
+        Args:
+            df: The input dataframe to merge with the table's data.
+            join_cols: The columns to join on.
+            merge_options: A dictionary of merge actions to perform. Currently 
supports these predicates >
+                when_matched_update_all: default is True
+                when_not_matched_insert_all: default is True
+
+        Returns:
+            A dictionary containing the number of rows updated and inserted.
+        """
+
+        from pyiceberg.table import merge_rows_util
+
+        try:
+            from datafusion import SessionContext
+        except ModuleNotFoundError as e:
+            raise ModuleNotFoundError("For merge_rows, DataFusion needs to be 
installed") from e
+        
+        try:
+            from pyarrow import dataset as ds
+        except ModuleNotFoundError as e:
+            raise ModuleNotFoundError("For merge_rows, PyArrow needs to be 
installed") from e
+
+        source_table_name = "source"
+        target_table_name = "target"
+
+        if merge_options is None or merge_options == {}:
+            merge_options = {'when_matched_update_all': True, 
'when_not_matched_insert_all': True}
+
+        when_matched_update_all = merge_options.get('when_matched_update_all', 
False)
+        when_not_matched_insert_all = 
merge_options.get('when_not_matched_insert_all', False)
+
+        if when_matched_update_all == False and when_not_matched_insert_all == 
False:
+            return {'rows_updated': 0, 'rows_inserted': 0, 'msg': 'no merge 
options selected...exiting'}
+
+        ctx = SessionContext()
+
+        #register both source and target tables so we can find the deltas to 
update/append
+        ctx.register_dataset(source_table_name, ds.dataset(df))
+        ctx.register_dataset(target_table_name, 
ds.dataset(self.scan().to_arrow()))
+
+        source_col_list = merge_rows_util.get_table_column_list(ctx, 
source_table_name)
+        target_col_list = merge_rows_util.get_table_column_list(ctx, 
target_table_name)
+        
+        source_col_names = set([col[0] for col in source_col_list])
+        target_col_names = set([col[0] for col in target_col_list])
+
+        source_col_types = {col[0]: col[1] for col in source_col_list}
+
+        missing_columns = 
merge_rows_util.do_join_columns_exist(source_col_names, target_col_names, 
join_cols)
+        
+        if missing_columns['source'] or missing_columns['target']:
+
+            return {'error_msgs': f"Join columns missing in tables: Source 
table columns missing: {missing_columns['source']}, Target table columns 
missing: {missing_columns['target']}"}
+
+        #check for dups on source
+        if merge_rows_util.dups_check_in_source(source_table_name, join_cols, 
ctx):
+
+            return {'error_msgs': 'Duplicate rows found in source dataset 
based on the key columns. No Merge executed'}
+
+        update_row_cnt = 0
+        insert_row_cnt = 0
+
+        txn = self.transaction()
+
+        try:
+            
+            if when_matched_update_all:
+                
+                update_recs_sql = 
merge_rows_util.get_rows_to_update_sql(source_table_name, target_table_name, 
join_cols, source_col_names, target_col_names)
+            
+                update_recs = ctx.sql(update_recs_sql).to_arrow_table()
+
+                update_row_cnt = len(update_recs)
+
+                if len(join_cols) == 1:
+                    join_col = join_cols[0]
+                    col_type = source_col_types[join_col]  
+                    values = [row[join_col] for row in update_recs.to_pylist()]
+                    # if strings are in the filter, we encapsulate with tick 
marks
+                    formatted_values = [f"'{value}'" if col_type == 'string' 
else str(value) for value in values]
+                    overwrite_filter = f"{join_col} IN ({', 
'.join(formatted_values)})"

Review Comment:
   How would this work for a situation where I have a composite key for my 
primary key?
   As an example, a table below has primary key on cust_id and line_item:
   
   cust_id  line_item cost
   1            1001        30.29
   2            2001       20.99
   
   my overwrite_filter from what i understand would have to be:
   
   (cust_id = 1 and line_item = 1001) or (cust_id = 2 and line_item = 
2001)...and so forth as more rows are needing to be compared
   
   would your method above for the _parse_row_filter work for composite keys? 
or for only single key tables?
   



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org
For additional commands, e-mail: issues-h...@iceberg.apache.org

Reply via email to