pvary commented on code in PR #14245:
URL: https://github.com/apache/iceberg/pull/14245#discussion_r2414565718


##########
flink/v2.1/flink/src/test/java/org/apache/iceberg/flink/source/reader/TestColumnStatsWatermarkExtractorEndToEnd.java:
##########
@@ -0,0 +1,233 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ *   http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing,
+ * software distributed under the License is distributed on an
+ * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+ * KIND, either express or implied.  See the License for the
+ * specific language governing permissions and limitations
+ * under the License.
+ */
+package org.apache.iceberg.flink.source.reader;
+
+import static org.apache.iceberg.types.Types.NestedField.required;
+import static org.assertj.core.api.Assertions.assertThat;
+
+import java.io.IOException;
+import java.nio.file.Path;
+import java.util.List;
+import java.util.concurrent.TimeUnit;
+import org.apache.flink.table.types.logical.RowType;
+import org.apache.flink.types.Row;
+import org.apache.iceberg.FileFormat;
+import org.apache.iceberg.Parameter;
+import org.apache.iceberg.ParameterizedTestExtension;
+import org.apache.iceberg.Parameters;
+import org.apache.iceberg.Schema;
+import org.apache.iceberg.Table;
+import org.apache.iceberg.data.GenericAppenderHelper;
+import org.apache.iceberg.data.RandomGenericData;
+import org.apache.iceberg.data.Record;
+import org.apache.iceberg.flink.FlinkSchemaUtil;
+import org.apache.iceberg.flink.HadoopTableExtension;
+import org.apache.iceberg.flink.TestHelpers;
+import org.apache.iceberg.flink.source.FlinkInputFormat;
+import org.apache.iceberg.flink.source.FlinkSource;
+import org.apache.iceberg.types.Types;
+import org.junit.jupiter.api.Test;
+import org.junit.jupiter.api.TestTemplate;
+import org.junit.jupiter.api.extension.ExtendWith;
+import org.junit.jupiter.api.extension.RegisterExtension;
+import org.junit.jupiter.api.io.TempDir;
+
+/**
+ * End-to-end tests for ColumnStatsWatermarkExtractor with nanosecond 
precision timestamps. This
+ * test validates that watermark extraction works correctly with actual data 
files containing
+ * nanosecond precision timestamps.
+ */
+@ExtendWith(ParameterizedTestExtension.class)
+public class TestColumnStatsWatermarkExtractorEndToEnd {
+
+  @Parameter(index = 0)
+  private FileFormat format;
+
+  @Parameters(name = "format = {0}")
+  public static Object[][] parameters() {
+    return new Object[][] {{FileFormat.PARQUET}, {FileFormat.AVRO}};
+  }
+
+  private static final String DATABASE = "test_db";
+  private static final String TABLE = "test_watermark_table";
+
+  // Schema with nanosecond precision timestamps for watermark testing
+  // Contains both nanosecond (ns) and microsecond (micros) precision 
timestamps
+  private static final Schema NANOSECOND_WATERMARK_SCHEMA =
+      new Schema(
+          required(1, "id", Types.LongType.get()),
+          required(2, "event_time_ns", Types.TimestampNanoType.withoutZone()),
+          required(3, "event_time_ns_tz", Types.TimestampNanoType.withZone()),
+          required(4, "event_time_micros", Types.TimestampType.withoutZone()),
+          required(5, "data", Types.StringType.get()));
+
+  @TempDir protected Path temporaryDirectory;
+
+  @RegisterExtension
+  private static final HadoopTableExtension TABLE_EXTENSION =
+      HadoopTableExtension.withFormatVersion3(DATABASE, TABLE, 
NANOSECOND_WATERMARK_SCHEMA);
+
+  /**
+   * Tests that ColumnStatsWatermarkExtractor can be instantiated with both 
nanosecond and
+   * microsecond precision timestamp columns. This verifies that the extractor 
correctly recognizes
+   * and accepts both TIMESTAMP_NANO and TIMESTAMP column types.
+   */
+  @Test
+  public void testWatermarkExtractorCreationWithNanosecondTimestamps() {
+    Table table = TABLE_EXTENSION.table();
+
+    // Test that we can create watermark extractors for nanosecond timestamp 
columns
+    ColumnStatsWatermarkExtractor extractorNs =
+        new ColumnStatsWatermarkExtractor(table.schema(), "event_time_ns", 
TimeUnit.MICROSECONDS);
+    assertThat(extractorNs).isNotNull();
+
+    ColumnStatsWatermarkExtractor extractorNsTz =
+        new ColumnStatsWatermarkExtractor(
+            table.schema(), "event_time_ns_tz", TimeUnit.MICROSECONDS);
+    assertThat(extractorNsTz).isNotNull();
+
+    // Test that we can still create extractors for microsecond timestamp 
columns
+    ColumnStatsWatermarkExtractor extractorMicros =
+        new ColumnStatsWatermarkExtractor(
+            table.schema(), "event_time_micros", TimeUnit.MICROSECONDS);
+    assertThat(extractorMicros).isNotNull();
+  }
+
+  /**
+   * Tests that ColumnStatsWatermarkExtractor can be created and used with 
actual data files
+   * containing nanosecond precision timestamps. This validates the end-to-end 
integration where
+   * data is written to files (Parquet/Avro) and the extractor is configured 
to read watermarks from
+   * the column statistics. The test verifies that data can be written with 
nanosecond timestamps,
+   * watermark extractors can be instantiated for these columns, and the 
schema correctly identifies
+   * timestamp types (nano vs micro).
+   */
+  @TestTemplate
+  public void testWatermarkExtractionWithRealData() throws Exception {
+    Table table = TABLE_EXTENSION.table();
+
+    // Generate test data with nanosecond precision timestamps
+    List<Record> testRecords = 
RandomGenericData.generate(NANOSECOND_WATERMARK_SCHEMA, 5, 42L);
+
+    // Write data to the table
+    new GenericAppenderHelper(table, format, 
temporaryDirectory).appendToTable(testRecords);
+
+    // Create watermark extractor for nanosecond timestamp column
+    ColumnStatsWatermarkExtractor extractor =
+        new ColumnStatsWatermarkExtractor(table.schema(), "event_time_ns", 
TimeUnit.MICROSECONDS);
+
+    // Validate that the extractor can be created and configured correctly
+    // Note: The actual watermark extraction happens in the Flink source 
during split processing
+    assertThat(extractor).isNotNull();
+
+    // Verify that the table has the expected schema
+    Schema tableSchema = table.schema();
+    assertThat(tableSchema.findField("event_time_ns")).isNotNull();
+    assertThat(tableSchema.findField("event_time_ns_tz")).isNotNull();
+    assertThat(tableSchema.findField("event_time_micros")).isNotNull();
+
+    // Verify that the timestamp fields are of the correct types
+    Types.NestedField eventTimeNsField = 
tableSchema.findField("event_time_ns");
+    
assertThat(eventTimeNsField.type()).isInstanceOf(Types.TimestampNanoType.class);
+
+    Types.NestedField eventTimeNsTzField = 
tableSchema.findField("event_time_ns_tz");
+    
assertThat(eventTimeNsTzField.type()).isInstanceOf(Types.TimestampNanoType.class);
+
+    Types.NestedField eventTimeMicrosField = 
tableSchema.findField("event_time_micros");
+    
assertThat(eventTimeMicrosField.type()).isInstanceOf(Types.TimestampType.class);
+  }
+
+  /**
+   * Tests the full write-read cycle for tables with nanosecond precision 
timestamps. This verifies
+   * that data with nanosecond timestamps can be written to files 
(Parquet/Avro), the data can be
+   * read back through Flink's source implementation, and nanosecond precision 
is preserved during
+   * the round-trip. This is an integration test ensuring that the complete 
data path works
+   * correctly with nanosecond timestamps.
+   */
+  @TestTemplate
+  public void testDataScanningWithNanosecondTimestamps() throws Exception {
+    Table table = TABLE_EXTENSION.table();
+
+    // Generate test data
+    List<Record> expectedRecords = 
RandomGenericData.generate(NANOSECOND_WATERMARK_SCHEMA, 3, 123L);
+
+    // Write data to the table
+    new GenericAppenderHelper(table, format, 
temporaryDirectory).appendToTable(expectedRecords);
+
+    // Test that we can scan the data back
+    FlinkSource.Builder builder =
+        
FlinkSource.forRowData().table(table).tableLoader(TABLE_EXTENSION.tableLoader());
+
+    List<Row> actualRows = runFormat(builder.buildFormat());
+
+    // Verify that we can read the data back correctly
+    assertThat(actualRows).hasSize(expectedRecords.size());
+
+    // The data should be readable, indicating that nanosecond timestamps are 
properly handled
+    // in the read path as well
+    TestHelpers.assertRecords(actualRows, expectedRecords, 
NANOSECOND_WATERMARK_SCHEMA);

Review Comment:
   Is there a way to test that the correct Watermark is emitted?



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to