Another way that Matthew Dowle showed me for this type of problem is to reshape frame to a long format. It makes it easier to manipulate and can be faster.
> longdt <- with(frame, data.table(group = unlist(rep(group, each=7)), x = > c(a,b,c,d,e,f,g))) > > system.time(new.frame4 <- longdt[, x/mean(x, na.rm = TRUE), by = "group"]) user system elapsed 0.54 0.04 0.61 > > # Or, remove the NAs ahead of time for more speed: > > longdt2 <- longdt[!is.na(longdt$x),] > system.time(new.frame4 <- longdt2[, x/mean(x), by = "group"]) user system elapsed 0.17 0.00 0.17 - Tom On Wed, Apr 7, 2010 at 3:46 PM, Tom Short <tshort.rli...@gmail.com> wrote: > Here's how I would have done the data.table method. It's a bit faster > than the ave approach on my machine: > >> # install.packages("data.table",repos="http://R-Forge.R-project.org") >> library(data.table) >> >> f3 <- function(frame) { > + frame <- as.data.table(frame) > + frame[, lapply(.SD[,2:ncol(.SD), with = FALSE], > + function(x) x / mean(x, na.rm = TRUE)), > + by = "group"] > + } >> >> system.time(new.frame2 <- f2(frame)) # ave > user system elapsed > 0.50 0.08 1.24 >> system.time(new.frame3 <- f3(frame)) # data.table > user system elapsed > 0.25 0.01 0.30 > > - Tom > > Tom Short > > > On Wed, Apr 7, 2010 at 12:46 PM, Dimitri Liakhovitski <ld7...@gmail.com> > wrote: >> I would like to thank once more everyone who helped me with this question. >> I compared the speed for different approaches. Below are the results >> of my comparisons - in case anyone is interested: >> >> ### Building an EXAMPLE FRAME with N rows - with groups and a lot of NAs: >> N<-100000 >> set.seed(1234) >> frame<-data.frame(group=rep(paste("group",1:10),N/10),a=rnorm(1:N),b=rnorm(1:N),c=rnorm(1:N),d=rnorm(1:N),e=rnorm(1:N),f=rnorm(1:N),g=rnorm(1:N)) >> frame<-frame[order(frame$group),] >> >> ## Introducing 60% NAs: >> names.used<-names(frame)[2:length(frame)] >> set.seed(1234) >> for(i in names.used){ >> i.for.NA<-sample(1:N,round((N*.6),0)) >> frame[[i]][i.for.NA]<-NA >> } >> lapply(frame[2:8], function(x) length(x[is.na(x)])) # Checking that it worked >> ORIGframe<-frame ## placeholder for the unchanged original frame >> >> ####### Objective of the code - divide each value by its group mean #### >> >> ### METHOD 1 - the FASTEST - using ave():############################## >> frame<-ORIGframe >> f2 <- function(frame) { >> for(i in 2:ncol(frame)) { >> frame[,i] <- ave(frame[,i], frame[,1], >> FUN=function(x)x/mean(x,na.rm=TRUE)) >> } >> frame >> } >> system.time({new.frame<-f2(frame)}) >> # Took me 0.23-0.27 sec >> ####################################### >> >> ### METHOD 2 - fast, just a bit slower - using data.table: >> ############################## >> >> # If you don't have it - install the package - NOT from CRAN: >> install.packages("data.table",repos="http://R-Forge.R-project.org") >> library(data.table) >> frame<-ORIGframe >> system.time({ >> table<-data.table(frame) >> colMeanFunction<-function(data,key){ >> data[[key]]=NULL >> ret=as.matrix(data)/matrix(rep(as.numeric(colMeans(as.data.frame(data),na.rm=T)),nrow(data)),nrow=nrow(data),ncol=ncol(data),byrow=T) >> return(ret) >> } >> groupedMeans = table[,colMeanFunction(.SD, "group"), by="group"] >> names.to.use<-names(groupedMeans) >> for(i in >> 1:length(groupedMeans)){groupedMeans[[i]]<-as.data.frame(groupedMeans[[i]])} >> groupedMeans<-do.call(cbind, groupedMeans) >> names(groupedMeans)<-names.to.use >> }) >> # Took me 0.37-.45 sec >> ####################################### >> >> ### METHOD 3 - fast, a tad slower (using model.matrix & matrix >> multiplication):############################## >> frame<-ORIGframe >> system.time({ >> mat <- as.matrix(frame[,-1]) >> mm <- model.matrix(~0+group,frame) >> col.grp.N <- crossprod( !is.na(mat), mm ) # Use this line if don't >> want to use NAs for mean calculations >> # col.grp.N <- crossprod( mat != 0 , mm ) # Use this line if don't >> want to use zeros for mean calculations >> mat[is.na(mat)] <- 0.0 >> col.grp.sum <- crossprod( mat, mm ) >> mat <- mat / ( t(col.grp.sum/col.grp.N)[ frame$group,] ) >> is.na(mat) <- is.na(frame[,-1]) >> mat<-as.data.frame(mat) >> }) >> # Took me 0.44-0.50 sec >> ####################################### >> >> ### METHOD 5- much slower - it's the one I started >> with:############################## >> frame<-ORIGframe >> system.time({ >> frame <- do.call(cbind, lapply(names.used, function(x){ >> unlist(by(frame, frame$group, function(y) y[,x] / >> mean(y[,x],na.rm=T))) >> })) >> }) >> # Took me 1.25-1.32 min >> ####################################### >> >> ### METHOD 6 - the slowest; using "plyr" and >> "ddply":############################## >> frame<-ORIGframe >> library(plyr) >> function3 <- function(x) x / mean(x, na.rm = TRUE) >> system.time({ >> grouping.factor<-"group" >> myvariables<-names(frame)[2:8] >> frame3<-ddply(frame, grouping.factor, colwise(function3, myvariables)) >> }) >> # Took me 1.36-1.47 min >> ####################################### >> >> >> Thanks again! >> Dimitri >> >> >> On Wed, Mar 31, 2010 at 8:29 PM, William Dunlap <wdun...@tibco.com> wrote: >>> Dimitri, >>> >>> You might try applying ave() to each column. E.g., use >>> >>> f2 <- function(frame) { >>> for(i in 2:ncol(frame)) { >>> frame[,i] <- ave(frame[,i], frame[,1], >>> FUN=function(x)x/mean(x,na.rm=TRUE)) >>> } >>> frame >>> } >>> >>> Note that this returns a data.frame and retains the >>> grouping column (the first) while your original >>> code returns a matrix without the grouping column. >>> >>> Bill Dunlap >>> Spotfire, TIBCO Software >>> wdunlap tibco.com >>> >>>> -----Original Message----- >>>> From: r-help-boun...@r-project.org >>>> [mailto:r-help-boun...@r-project.org] On Behalf Of Bert Gunter >>>> Sent: Tuesday, March 30, 2010 10:52 AM >>>> To: 'Dimitri Liakhovitski'; 'r-help' >>>> Subject: Re: [R] Code is too slow: mean-centering variables >>>> in a data framebysubgroup >>>> >>>> ?scale >>>> >>>> Bert Gunter >>>> Genentech Nonclinical Biostatistics >>>> >>>> >>>> >>>> -----Original Message----- >>>> From: r-help-boun...@r-project.org >>>> [mailto:r-help-boun...@r-project.org] On >>>> Behalf Of Dimitri Liakhovitski >>>> Sent: Tuesday, March 30, 2010 8:05 AM >>>> To: r-help >>>> Subject: [R] Code is too slow: mean-centering variables in a >>>> data frame >>>> bysubgroup >>>> >>>> Dear R-ers, >>>> >>>> I have a large data frame (several thousands of rows and about 2.5 >>>> thousand columns). One variable ("group") is a grouping variable with >>>> over 30 levels. And I have a lot of NAs. >>>> For each variable, I need to divide each value by variable mean - by >>>> subgroup. I have the code but it's way too slow - takes me about 1.5 >>>> hours. >>>> Below is a data example and my code that is too slow. Is there a >>>> different, faster way of doing the same thing? >>>> Thanks a lot for your advice! >>>> >>>> Dimitri >>>> >>>> >>>> # Building an example frame - with groups and a lot of NAs: >>>> set.seed(1234) >>>> frame<-data.frame(group=rep(paste("group",1:10),10),a=rnorm(1: >>> 100),b=rnorm(1 >>>> :100),c=rnorm(1:100),d=rnorm(1:100),e=rnorm(1:100),f=rnorm(1:1 >>>> 00),g=rnorm(1: >>>> 100)) >>>> frame<-frame[order(frame$group),] >>>> names.used<-names(frame)[2:length(frame)] >>>> set.seed(1234) >>>> for(i in names.used){ >>>> i.for.NA<-sample(1:100,60) >>>> frame[[i]][i.for.NA]<-NA >>>> } >>>> frame >>>> >>>> ### Code that does what's needed but is too slow: >>>> Start<-Sys.time() >>>> frame <- do.call(cbind, lapply(names.used, function(x){ >>>> unlist(by(frame, frame$group, function(y) y[,x] / >>>> mean(y[,x],na.rm=T))) >>>> })) >>>> Finish<-Sys.time() >>>> print(Finish-Start) # Takes too long >>>> >>>> -- >>>> Dimitri Liakhovitski >>>> Ninah.com >>>> dimitri.liakhovit...@ninah.com >>>> >>>> ______________________________________________ >>>> R-help@r-project.org mailing list >>>> https://stat.ethz.ch/mailman/listinfo/r-help >>>> PLEASE do read the posting guide >>>> http://www.R-project.org/posting-guide.html >>>> and provide commented, minimal, self-contained, reproducible code. >>>> >>>> ______________________________________________ >>>> R-help@r-project.org mailing list >>>> https://stat.ethz.ch/mailman/listinfo/r-help >>>> PLEASE do read the posting guide >>>> http://www.R-project.org/posting-guide.html >>>> and provide commented, minimal, self-contained, reproducible code. >>>> >>> >> >> >> >> -- >> Dimitri Liakhovitski >> Ninah.com >> dimitri.liakhovit...@ninah.com >> >> ______________________________________________ >> R-help@r-project.org mailing list >> https://stat.ethz.ch/mailman/listinfo/r-help >> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html >> and provide commented, minimal, self-contained, reproducible code. >> > ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.