Leave it up to Tom to solve things wickedly fast :)

Just as an fyi Dimitri, Tom is one of the developers of data.table.

-Rob

On Wed, Apr 7, 2010 at 2:51 PM, Dimitri Liakhovitski <ld7...@gmail.com>wrote:

> Wow, thank you, Tom!
>
> On Wed, Apr 7, 2010 at 3:46 PM, Tom Short <tshort.rli...@gmail.com> wrote:
> > Here's how I would have done the data.table method. It's a bit faster
> > than the ave approach on my machine:
> >
> >> # install.packages("data.table",repos="http://R-Forge.R-project.org";)
> >> library(data.table)
> >>
> >> f3 <- function(frame) {
> > +   frame <- as.data.table(frame)
> > +   frame[, lapply(.SD[,2:ncol(.SD), with = FALSE],
> > +                  function(x) x / mean(x, na.rm = TRUE)),
> > +         by = "group"]
> > + }
> >>
> >> system.time(new.frame2 <- f2(frame)) # ave
> >   user  system elapsed
> >   0.50    0.08    1.24
> >> system.time(new.frame3 <- f3(frame)) # data.table
> >   user  system elapsed
> >   0.25    0.01    0.30
> >
> > - Tom
> >
> > Tom Short
> >
> >
> > On Wed, Apr 7, 2010 at 12:46 PM, Dimitri Liakhovitski <ld7...@gmail.com>
> wrote:
> >> I would like to thank once more everyone who helped me with this
> question.
> >> I compared the speed for different approaches. Below are the results
> >> of my comparisons - in case anyone is interested:
> >>
> >> ### Building an EXAMPLE FRAME with N rows - with groups and a lot of
> NAs:
> >> N<-100000
> >> set.seed(1234)
> >>
> frame<-data.frame(group=rep(paste("group",1:10),N/10),a=rnorm(1:N),b=rnorm(1:N),c=rnorm(1:N),d=rnorm(1:N),e=rnorm(1:N),f=rnorm(1:N),g=rnorm(1:N))
> >> frame<-frame[order(frame$group),]
> >>
> >> ## Introducing 60% NAs:
> >> names.used<-names(frame)[2:length(frame)]
> >> set.seed(1234)
> >> for(i in names.used){
> >>      i.for.NA<-sample(1:N,round((N*.6),0))
> >>      frame[[i]][i.for.NA]<-NA
> >> }
> >> lapply(frame[2:8], function(x) length(x[is.na(x)])) # Checking that it
> worked
> >> ORIGframe<-frame ## placeholder for the unchanged original frame
> >>
> >> ####### Objective of the code - divide each value by its group mean ####
> >>
> >> ### METHOD 1 - the FASTEST - using ave():##############################
> >> frame<-ORIGframe
> >> f2 <- function(frame) {
> >>  for(i in 2:ncol(frame)) {
> >>     frame[,i] <- ave(frame[,i], frame[,1],
> FUN=function(x)x/mean(x,na.rm=TRUE))
> >>  }
> >>  frame
> >> }
> >> system.time({new.frame<-f2(frame)})
> >> # Took me 0.23-0.27 sec
> >> #######################################
> >>
> >> ### METHOD 2 - fast, just a bit slower - using data.table:
> >> ##############################
> >>
> >> # If you don't have it - install the package - NOT from CRAN:
> >> install.packages("data.table",repos="http://R-Forge.R-project.org";)
> >> library(data.table)
> >> frame<-ORIGframe
> >> system.time({
> >> table<-data.table(frame)
> >> colMeanFunction<-function(data,key){
> >>  data[[key]]=NULL
> >>
>  
> ret=as.matrix(data)/matrix(rep(as.numeric(colMeans(as.data.frame(data),na.rm=T)),nrow(data)),nrow=nrow(data),ncol=ncol(data),byrow=T)
> >>  return(ret)
> >> }
> >> groupedMeans = table[,colMeanFunction(.SD, "group"), by="group"]
> >> names.to.use<-names(groupedMeans)
> >> for(i in
> 1:length(groupedMeans)){groupedMeans[[i]]<-as.data.frame(groupedMeans[[i]])}
> >> groupedMeans<-do.call(cbind, groupedMeans)
> >> names(groupedMeans)<-names.to.use
> >> })
> >> # Took me 0.37-.45 sec
> >> #######################################
> >>
> >> ### METHOD 3 - fast, a tad slower (using model.matrix & matrix
> >> multiplication):##############################
> >> frame<-ORIGframe
> >> system.time({
> >> mat <- as.matrix(frame[,-1])
> >> mm <- model.matrix(~0+group,frame)
> >> col.grp.N <- crossprod( !is.na(mat), mm ) # Use this line if don't
> >> want to use NAs for mean calculations
> >> # col.grp.N <- crossprod( mat != 0 , mm ) # Use this line if don't
> >> want to use zeros for mean calculations
> >> mat[is.na(mat)] <- 0.0
> >> col.grp.sum <- crossprod( mat, mm )
> >> mat <- mat / ( t(col.grp.sum/col.grp.N)[ frame$group,] )
> >> is.na(mat) <- is.na(frame[,-1])
> >> mat<-as.data.frame(mat)
> >> })
> >> # Took me 0.44-0.50 sec
> >> #######################################
> >>
> >> ### METHOD 5-  much slower - it's the one I started
> >> with:##############################
> >> frame<-ORIGframe
> >> system.time({
> >> frame <- do.call(cbind, lapply(names.used, function(x){
> >>        unlist(by(frame, frame$group, function(y) y[,x] /
> mean(y[,x],na.rm=T)))
> >>        }))
> >> })
> >> # Took me 1.25-1.32 min
> >> #######################################
> >>
> >> ### METHOD 6 -  the slowest; using "plyr" and
> >> "ddply":##############################
> >> frame<-ORIGframe
> >> library(plyr)
> >> function3 <- function(x) x / mean(x, na.rm = TRUE)
> >> system.time({
> >> grouping.factor<-"group"
> >> myvariables<-names(frame)[2:8]
> >> frame3<-ddply(frame, grouping.factor, colwise(function3, myvariables))
> >> })
> >> # Took me 1.36-1.47 min
> >> #######################################
> >>
> >>
> >> Thanks again!
> >> Dimitri
> >>
> >>
> >> On Wed, Mar 31, 2010 at 8:29 PM, William Dunlap <wdun...@tibco.com>
> wrote:
> >>> Dimitri,
> >>>
> >>> You might try applying ave() to each column.  E.g., use
> >>>
> >>> f2 <- function(frame) {
> >>>   for(i in 2:ncol(frame)) {
> >>>      frame[,i] <- ave(frame[,i], frame[,1],
> >>> FUN=function(x)x/mean(x,na.rm=TRUE))
> >>>   }
> >>>   frame
> >>> }
> >>>
> >>> Note that this returns a data.frame and retains the
> >>> grouping column (the first) while your original
> >>> code returns a matrix without the grouping column.
> >>>
> >>> Bill Dunlap
> >>> Spotfire, TIBCO Software
> >>> wdunlap tibco.com
> >>>
> >>>> -----Original Message-----
> >>>> From: r-help-boun...@r-project.org
> >>>> [mailto:r-help-boun...@r-project.org] On Behalf Of Bert Gunter
> >>>> Sent: Tuesday, March 30, 2010 10:52 AM
> >>>> To: 'Dimitri Liakhovitski'; 'r-help'
> >>>> Subject: Re: [R] Code is too slow: mean-centering variables
> >>>> in a data framebysubgroup
> >>>>
> >>>> ?scale
> >>>>
> >>>> Bert Gunter
> >>>> Genentech Nonclinical Biostatistics
> >>>>
> >>>>
> >>>>
> >>>> -----Original Message-----
> >>>> From: r-help-boun...@r-project.org
> >>>> [mailto:r-help-boun...@r-project.org] On
> >>>> Behalf Of Dimitri Liakhovitski
> >>>> Sent: Tuesday, March 30, 2010 8:05 AM
> >>>> To: r-help
> >>>> Subject: [R] Code is too slow: mean-centering variables in a
> >>>> data frame
> >>>> bysubgroup
> >>>>
> >>>> Dear R-ers,
> >>>>
> >>>> I have  a large data frame (several thousands of rows and about 2.5
> >>>> thousand columns). One variable ("group") is a grouping variable with
> >>>> over 30 levels. And I have a lot of NAs.
> >>>> For each variable, I need to divide each value by variable mean - by
> >>>> subgroup. I have the code but it's way too slow - takes me about 1.5
> >>>> hours.
> >>>> Below is a data example and my code that is too slow. Is there a
> >>>> different, faster way of doing the same thing?
> >>>> Thanks a lot for your advice!
> >>>>
> >>>> Dimitri
> >>>>
> >>>>
> >>>> # Building an example frame - with groups and a lot of NAs:
> >>>> set.seed(1234)
> >>>> frame<-data.frame(group=rep(paste("group",1:10),10),a=rnorm(1:
> >>> 100),b=rnorm(1
> >>>> :100),c=rnorm(1:100),d=rnorm(1:100),e=rnorm(1:100),f=rnorm(1:1
> >>>> 00),g=rnorm(1:
> >>>> 100))
> >>>> frame<-frame[order(frame$group),]
> >>>> names.used<-names(frame)[2:length(frame)]
> >>>> set.seed(1234)
> >>>> for(i in names.used){
> >>>>        i.for.NA<-sample(1:100,60)
> >>>>        frame[[i]][i.for.NA]<-NA
> >>>> }
> >>>> frame
> >>>>
> >>>> ### Code that does what's needed but is too slow:
> >>>> Start<-Sys.time()
> >>>> frame <- do.call(cbind, lapply(names.used, function(x){
> >>>>   unlist(by(frame, frame$group, function(y) y[,x] /
> >>>> mean(y[,x],na.rm=T)))
> >>>> }))
> >>>> Finish<-Sys.time()
> >>>> print(Finish-Start) # Takes too long
> >>>>
> >>>> --
> >>>> Dimitri Liakhovitski
> >>>> Ninah.com
> >>>> dimitri.liakhovit...@ninah.com
> >>>>
> >>>> ______________________________________________
> >>>> R-help@r-project.org mailing list
> >>>> https://stat.ethz.ch/mailman/listinfo/r-help
> >>>> PLEASE do read the posting guide
> >>>> http://www.R-project.org/posting-guide.html
> >>>> and provide commented, minimal, self-contained, reproducible code.
> >>>>
> >>>> ______________________________________________
> >>>> R-help@r-project.org mailing list
> >>>> https://stat.ethz.ch/mailman/listinfo/r-help
> >>>> PLEASE do read the posting guide
> >>>> http://www.R-project.org/posting-guide.html
> >>>> and provide commented, minimal, self-contained, reproducible code.
> >>>>
> >>>
> >>
> >>
> >>
> >> --
> >> Dimitri Liakhovitski
> >> Ninah.com
> >> dimitri.liakhovit...@ninah.com
> >>
> >> ______________________________________________
> >> R-help@r-project.org mailing list
> >> https://stat.ethz.ch/mailman/listinfo/r-help
> >> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> >> and provide commented, minimal, self-contained, reproducible code.
> >>
> >
>
>
>
> --
> Dimitri Liakhovitski
> Ninah.com
> dimitri.liakhovit...@ninah.com
>
> ______________________________________________
> R-help@r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>

        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to