Hi Cyrus, Try this: pcr<-data.frame(Ct=runif(66,10,20),Gene=rep(LETTERS[1:22],3), Type=rep(c("Std","Unkn"),33),Rep=rep(1:3,each=22)) testagg<-aggregate(pcr$Ct,c(pcr["Gene"],pcr["Type"],pcr["Rep"]), FUN=function(x){c(mean(x), sd(x), sd(x)/sqrt(sd(x)))}) nxcol<-dim(testagg$x)[2] newxs<-paste("x",1:nxcol,sep="") for(col in 1:nxcol) testagg[[newxs[col]]]<-testagg$x[,col] testagg$x<-NULL
Jim On Thu, Mar 28, 2019 at 12:39 PM cir p via R-help <r-help@r-project.org> wrote: > > Dear users, > i am trying to summarize data using "aggregate" with the following command: > > aggregate(pcr$Ct,c(pcr["Gene"],pcr["Type"],pcr["Rep"]),FUN=function(x){c(mean(x), > sd(x), sd(x)/sqrt(sd(x)))}) > > and the structure of the resulting data frame is > > 'data.frame': 66 obs. of 4 variables: > $ Gene: Factor w/ 22 levels "14-3-3e","Act5C",..: 1 2 3 4 5 6 7 8 9 10 ... > $ Type: Factor w/ 2 levels "Std","Unkn": 2 2 2 2 2 2 2 2 2 2 ... > $ Rep : int 1 1 1 1 1 1 1 1 1 1 ... > $ x : num [1:66, 1:3] 16.3 16.7 18.2 17.1 18.6 ... > > The actual data is "bundled" in a matrix $x of the data frame. I would like > to have the columns of this matrix as individual numeric columns in the same > data frame instead of a matrix, but cant really figure it out how to do this > in an efficient way. Could someone help me with the construction of this? > > Thanks a lot, > > Cyrus > > ______________________________________________ > R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.