Dear Thierry

id.pat                       = rep(seq(1:nsample), each 
=n.longitudinal.observations)

time                         = rep(seq(1:n.longitudinal.observations)-1, 
nsample)

age                          = rnorm(nsample, mean = 36, sd = .8)
f.age                        = table(cut(age, breaks = 8))
id.age                      = rep(f.age, each =5)
visit                         = rnorm(nsample, mean = 2, sd = .03)
f.visit                       = table(cut(visit, breaks = 3))
id.visit                     = rep(f.visit, each =5)


1.
I was able to solve the age problem and the number of visits problem. Now the 
problem is another:

yy~1+id.age+time+(time|id.pat)

or 

yy~1+id.age + time+(time|id.pat) + (1|id.visit)

there is no problem, but when I perform LMER, for example:

lmer(yy~1+id.age+time+(time|id.pat)), there are errors:

Error in model.frame.default(drop.unused.levels = TRUE, formula = yy ~  : 
  variable lengths differ (found for 'time’)

or 

Error in model.frame.default(drop.unused.levels = TRUE, formula = yy ~  : 
  variable lengths differ (found for 'id.age')



2. I wasn’t trying to add the same variable to both random and fixed effects. 
I’m simulating a model and I’m trying to figure if it makes sense to add some 
variables into the model.


Another doubt,

3. LMER only accepts categorical variables?


Best,
RO


Atenciosamente,
Rosa Oliveira

-- 
____________________________________________________________________________


Rosa Celeste dos Santos Oliveira, 

E-mail: rosit...@gmail.com
Tlm: +351 939355143 
Linkedin: https://pt.linkedin.com/in/rosacsoliveira
____________________________________________________________________________
"Many admire, few know"
Hippocrates

> On 11 Aug 2015, at 09:00, Thierry Onkelinx <thierry.onkel...@inbo.be> wrote:
> 
> Dear Rosa,
> 
> 1) use cut() to convert a continuous variable into a factor. See ?cut for the 
> details.
> 2) The syntax for factors is the same as for continuous variables. Just add 
> the name of the factor variable to the formula
> fAge <- cut(age)
> yy~1+fAge+time+(time|id.pat)
> 3) Add + (1|fAge) to the formula. Note that adding fAge to both the fixed and 
> the random effect doesn't make sense.
> yy~1+time+(time|id.pat) + (1|fAge)
> 
> Best regards,
> 
> ir. Thierry Onkelinx
> Instituut voor natuur- en bosonderzoek / Research Institute for Nature and 
> Forest 
> team Biometrie & Kwaliteitszorg / team Biometrics & Quality Assurance 
> Kliniekstraat 25
> 1070 Anderlecht
> Belgium
> 
> To call in the statistician after the experiment is done may be no more than 
> asking him to perform a post-mortem examination: he may be able to say what 
> the experiment died of. ~ Sir Ronald Aylmer Fisher
> The plural of anecdote is not data. ~ Roger Brinner 
> The combination of some data and an aching desire for an answer does not 
> ensure that a reasonable answer can be extracted from a given body of data. ~ 
> John Tukey
> 
> 2015-08-11 1:44 GMT+02:00 Rosa Oliveira <rosit...@gmail.com 
> <mailto:rosit...@gmail.com>>:
> 
> 
> ###############################################################################
> 
> # Clear memory and set the working directory and the seed
> 
> ###############################################################################
> 
> rm(list = ls())
> 
> setwd("/Dropbox/LMER/R ")
> 
> set.seed(7010)
> 
> ###############################################################################
> 
> # Load up needed packages and do a require
> 
> ###############################################################################
> 
> # install.packages("gdata")
> 
> 
> 
> library(nlme)
> 
> library(lme4)
> 
> 
> 
> nsample                                       = 1000                    # 
> Number of subjects
> 
> n.longitudinal.observations  = 5                                  # number of 
> observations per subject
> 
> 
> 
> ###############################################################################
> 
> # Set the other parameters
> 
> ###############################################################################
> 
> id.pat                       = rep(seq(1:nsample), each 
> =n.longitudinal.observations)
> 
> time                         = rep(seq(1:n.longitudinal.observations)-1, 
> nsample)
> 
> age                          = rnorm(nsample, mean = 36, sd = .8)
> id.age                      = rep(seq(1: n.longitudinal.observations), each 
> =age)
> 
> 
> 
> 
> 
> ###############################################################################
>  MODEL WITHOUT AGE
> 
> boldBeta_individual_blup = coef(lmer(yy~1+time+(time|id.pat)   ))$id.pat   
> #mixed model
> 
> 
> 
> 
> 
> ###############################################################################
>  MODEL WITH AGE
> 
> boldBeta_individual_blup = coef(lmer(yy~1+age+time+(time|id.pat)   ))$id.pat  
>  #mixed model
> 
> 
> 
> Dear all,
> 
> 
> 
> 
> 
> I’m trying to use LMER in my simulation problem, and I’m having problems ate 
> the very begging L I’m new in LMER. Can you please help me?
> 
> 
> 
> 
> 
> 1st problem:
> 
> how do I generate age so I can use it as a fixed factor?
> 
> 2nd problem:
> 
> how do I insert age as a fixed factor?
> 
> 3rd problem:
> 
>  what if I wanted to insert a 2nd random effect based on age?
> 
> 
> 
> Best,
> 
> RO
> 
> 
> 
> Atenciosamente,
> Rosa Oliveira
> 
> --
> ____________________________________________________________________________
> 
> 
> Rosa Celeste dos Santos Oliveira,
> 
> E-mail: rosit...@gmail.com <mailto:rosit...@gmail.com>
> Tlm: +351 939355143 <tel:%2B351%20939355143>
> Linkedin: https://pt.linkedin.com/in/rosacsoliveira 
> <https://pt.linkedin.com/in/rosacsoliveira>
> ____________________________________________________________________________
> "Many admire, few know"
> Hippocrates
> 
> ______________________________________________
> R-help@r-project.org <mailto:R-help@r-project.org> mailing list -- To 
> UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help 
> <https://stat.ethz.ch/mailman/listinfo/r-help>
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html 
> <http://www.r-project.org/posting-guide.html>
> and provide commented, minimal, self-contained, reproducible code.
> 

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to