Dear Rosa, 1) use cut() to convert a continuous variable into a factor. See ?cut for the details. 2) The syntax for factors is the same as for continuous variables. Just add the name of the factor variable to the formula fAge <- cut(age) yy~1+fAge+time+(time|id.pat) 3) Add + (1|fAge) to the formula. Note that adding fAge to both the fixed and the random effect doesn't make sense. yy~1+time+(time|id.pat) + (1|fAge)
Best regards, ir. Thierry Onkelinx Instituut voor natuur- en bosonderzoek / Research Institute for Nature and Forest team Biometrie & Kwaliteitszorg / team Biometrics & Quality Assurance Kliniekstraat 25 1070 Anderlecht Belgium To call in the statistician after the experiment is done may be no more than asking him to perform a post-mortem examination: he may be able to say what the experiment died of. ~ Sir Ronald Aylmer Fisher The plural of anecdote is not data. ~ Roger Brinner The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data. ~ John Tukey 2015-08-11 1:44 GMT+02:00 Rosa Oliveira <rosit...@gmail.com>: > > > > ############################################################################### > > # Clear memory and set the working directory and the seed > > > ############################################################################### > > rm(list = ls()) > > setwd("/Dropbox/LMER/R ") > > set.seed(7010) > > > ############################################################################### > > # Load up needed packages and do a require > > > ############################################################################### > > # install.packages("gdata") > > > > library(nlme) > > library(lme4) > > > > nsample = 1000 # > Number of subjects > > n.longitudinal.observations = 5 # number > of observations per subject > > > > > ############################################################################### > > # Set the other parameters > > > ############################################################################### > > id.pat = rep(seq(1:nsample), each > =n.longitudinal.observations) > > time = rep(seq(1:n.longitudinal.observations)-1, > nsample) > > age = rnorm(nsample, mean = 36, sd = .8) > id.age = rep(seq(1: n.longitudinal.observations), > each =age) > > > > > > ############################################################################### > MODEL WITHOUT AGE > > boldBeta_individual_blup = coef(lmer(yy~1+time+(time|id.pat) ))$id.pat > #mixed model > > > > > > ############################################################################### > MODEL WITH AGE > > boldBeta_individual_blup = coef(lmer(yy~1+age+time+(time|id.pat) > ))$id.pat #mixed model > > > > Dear all, > > > > > > I’m trying to use LMER in my simulation problem, and I’m having problems > ate the very begging L I’m new in LMER. Can you please help me? > > > > > > 1st problem: > > how do I generate age so I can use it as a fixed factor? > > 2nd problem: > > how do I insert age as a fixed factor? > > 3rd problem: > > what if I wanted to insert a 2nd random effect based on age? > > > > Best, > > RO > > > > Atenciosamente, > Rosa Oliveira > > -- > > ____________________________________________________________________________ > > > Rosa Celeste dos Santos Oliveira, > > E-mail: rosit...@gmail.com > Tlm: +351 939355143 > Linkedin: https://pt.linkedin.com/in/rosacsoliveira > > ____________________________________________________________________________ > "Many admire, few know" > Hippocrates > > ______________________________________________ > R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.