Hello! Very new to R (10 days), and I've run the linear mixed model, below. Attempting to interpret what it means... What do I need to look for? Residuals, correlations of fixed effects?!
How would I look at very specific interactions, such as PREMIER_LEAGUE (Level) 18 (AgeGr) GK (Position) mean difference to CHAMPIONSHIP 18 GK? For reference my data set looks like this: Id Level AgeGr Position Height Weight BMI YoYo 7451 CHAMPIONSHIP 14 M NA 63 NA 80 148 PREMIER_LEAGUE 16 D NA 64 NA 80 10393 CONFERENCE 10 D NA 36 NA 160 10200 CHAMPIONSHIP 10 F NA 46 NA 160 1961 LEAGUE_TWO 13 GK NA 67 NA 160 10428 CHAMPIONSHIP 10 GK NA 40 NA 160 10541 LEAGUE_ONE 10 F NA 25 NA 160 10012 CHAMPIONSHIP 10 GK NA 30 NA 160 9895 CHAMPIONSHIP 10 D NA 36 NA 160 Many thanks in advance for time and help. Really appreciate it. Josh > summary(lmer(YoYo~AgeGr+Position+(1|Id))) Linear mixed model fit by REML ['lmerMod'] Formula: YoYo ~ AgeGr + Position + (1 | Id) REML criterion at convergence: 125712.2 Scaled residuals: Min 1Q Median 3Q Max -3.4407 -0.5288 -0.0874 0.4531 4.8242 Random effects: Groups Name Variance Std.Dev. Id (Intercept) 15300 123.7 Residual 16530 128.6 Number of obs: 9609, groups: Id, 6071 Fixed effects: Estimate Std. Error t value (Intercept) -521.6985 16.8392 -30.98 AgeGr 62.6786 0.9783 64.07 PositionD 139.4682 7.8568 17.75 PositionM 141.2227 7.7072 18.32 PositionF 135.1241 8.1911 16.50 Correlation of Fixed Effects: (Intr) AgeGr PostnD PostnM AgeGr -0.910 PositionD -0.359 -0.009 PositionM -0.375 0.001 0.810 PositionF -0.349 -0.003 0.756 0.782 > model=lmer(YoYo~AgeGr+Position+(1|Id)) > summary(glht(model,linfct=mcp(Position="Tukey"))) Simultaneous Tests for General Linear Hypotheses Multiple Comparisons of Means: Tukey Contrasts Fit: lmer(formula = YoYo ~ AgeGr + Position + (1 | Id)) Linear Hypotheses: Estimate Std. Error z value Pr(>|z|) D - GK == 0 139.468 7.857 17.751 <1e-04 *** M - GK == 0 141.223 7.707 18.323 <1e-04 *** F - GK == 0 135.124 8.191 16.496 <1e-04 *** M - D == 0 1.754 4.799 0.366 0.983 F - D == 0 -4.344 5.616 -0.774 0.862 F - M == 0 -6.099 5.267 -1.158 0.645 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Adjusted p values reported -- single-step method) [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.