Hi Rui, Yes you are right, there is no argument 'data". Mistakenly, I wrote only 'data' in the email. but in the r script, I have written newdata. As you suggested, I did trying one prediction at a time, but still- same problem. It is really big data set. May be - should I go 'Matlab' for this big data set? thanks
> Date: Wed, 22 May 2013 15:56:18 +0100 > From: ruipbarra...@sapo.pt > To: kristi.glo...@hotmail.com > CC: r-help@r-project.org > Subject: Re: [R] Code overloading PC > > Hello, > > In predict.glm, there's no argument 'data', it's 'newdata'. > As for your problem, maybe try doing one prediction at a time, write the > results to file, then the next. > > Hope this helps, > > Rui Barradas > > Em 22-05-2013 15:20, Kristi Glover escreveu: > > Hi R user, > > I was trying to develop a model (logistic regression) for 4001 dependent > > variables using 15 environmental variables (45000 rows); and then trying to > > use the models to predict in future. I used following code but it took so > > much time and consumed 100% of the PC memory. Even though- analysis was not > > complete. I got a following message > > " Reached total allocation of 8098Mb: see help(memory.size)". I increased > > memory size to 8GB. but still I could not complete the analysis. > > Any suggestion to reduce the memory and compute the big data set. > > > > #------------------------------------------------------------------ > > data=spec.Env > > > > models <- list() > > PredictModelsCur<-list() > > PredictModelsA1<-list() > > PredictModelsA2<-list() > > PredictModelsA3<-list() > > dvnames <- paste("V", 2:4003, sep="") > > ivnames <- paste("env", 1:15, sep="",collapse="+") ## for some value of n > > > > for (y in dvnames){ > > form <- formula(paste(y,"~",ivnames)) > > models[[y]] <- glm(form, data=spec.Env, family='binomial') > > PredictModelsCur[[y]]<-predict(models[[y]], type="response") > > PredictModelsA1[[y]]<-predict(models[[y]], data = a1.Futute, > > type="response") > > PredictModelsA2[[y]]<-predict(models[[y]], data = a2.Futute, > > type="response") > > PredictModelsA3[[y]]<-predict(models[[y]], data = a3.Futute, > > type="response") > > } > > > > write.csv(PredictModelsCur, "PredictModelsCur.csv", row.names=F) > > write.csv(PredictModelsA1, "PredictModelsA1.csv", row.names=F) > > write.csv(PredictModelsA2, "PredictModelsA2.csv", row.names=F) > > write.csv(PredictModelsA3, "PredictModelsA3.csv", row.names=F) > > > > > > [[alternative HTML version deleted]] > > > > ______________________________________________ > > R-help@r-project.org mailing list > > https://stat.ethz.ch/mailman/listinfo/r-help > > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > > and provide commented, minimal, self-contained, reproducible code. > > [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.