Hi R user, I was trying to develop a model (logistic regression) for 4001 dependent variables using 15 environmental variables (45000 rows); and then trying to use the models to predict in future. I used following code but it took so much time and consumed 100% of the PC memory. Even though- analysis was not complete. I got a following message " Reached total allocation of 8098Mb: see help(memory.size)". I increased memory size to 8GB. but still I could not complete the analysis. Any suggestion to reduce the memory and compute the big data set.
#------------------------------------------------------------------ data=spec.Env models <- list() PredictModelsCur<-list() PredictModelsA1<-list() PredictModelsA2<-list() PredictModelsA3<-list() dvnames <- paste("V", 2:4003, sep="") ivnames <- paste("env", 1:15, sep="",collapse="+") ## for some value of n for (y in dvnames){ form <- formula(paste(y,"~",ivnames)) models[[y]] <- glm(form, data=spec.Env, family='binomial') PredictModelsCur[[y]]<-predict(models[[y]], type="response") PredictModelsA1[[y]]<-predict(models[[y]], data = a1.Futute, type="response") PredictModelsA2[[y]]<-predict(models[[y]], data = a2.Futute, type="response") PredictModelsA3[[y]]<-predict(models[[y]], data = a3.Futute, type="response") } write.csv(PredictModelsCur, "PredictModelsCur.csv", row.names=F) write.csv(PredictModelsA1, "PredictModelsA1.csv", row.names=F) write.csv(PredictModelsA2, "PredictModelsA2.csv", row.names=F) write.csv(PredictModelsA3, "PredictModelsA3.csv", row.names=F) [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.