On Thu, 8 May 2008, kate wrote:
I have a data with 236 observations. After plotting the histogram, I found that it looks like non-central t distribution. I would like to get MLE for mu and df.
So you mean 'non-central'? See ?dt.
I found an example to find MLE for gamma distribution from "fitting distributions with R": library(stats4) ## loading package stats4 ll<-function(lambda,alfa) {n<-200 x<-x.gam -n*alfa*log(lambda)+n*log(gamma(alfa))-(alfa- 1)*sum(log(x))+lambda*sum(x)} ## -log-likelihood function est<-mle(minuslog=ll, start=list(lambda=2,alfa=1)) Is anyone how how to write down -log-likelihood function for noncentral t distribution?
Just use dt. E.g.
library(MASS) ?fitdistr
shows you a worked example for location, scale and df, but note the comments. You could fit a non-central t, but it would be unusual to do so.
Thanks a lot!! Kate [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.
-- Brian D. Ripley, [EMAIL PROTECTED] Professor of Applied Statistics, http://www.stats.ox.ac.uk/~ripley/ University of Oxford, Tel: +44 1865 272861 (self) 1 South Parks Road, +44 1865 272866 (PA) Oxford OX1 3TG, UK Fax: +44 1865 272595 ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.