On Jul 2, 2012, at 5:13 AM, Lekgatlhamang, lexi Setlhare wrote:

Hi David and AK,
I have been trying to implement your suggestions since yesterday, but I encountered some challenges.

As for David's suggestions, I could only implement it after some modifications. Using an abridged version of my data, I dpud my dataset and then show my steps below.

Well, your initial question (why the $ referencing did not work) is now answered. This is not a dataframe but rather a 'ts' classed object and there is no `$` method for such objects. They are really matrices with some extra attributes.

> ydata$BoBCL1
Error in ydata$BoBCL1 : $ operator is invalid for atomic vectors

As I understood it you were able to get useful analyses using the formula methods for lm on these objects, but were just having difficulty with the "$" operator. So the answer is ..... don't do that.
--
David.


dput(ydata)
structure(c(68.1000000000004, -34.8000000000002, 90.3999999999996,
54.6000000000004, -172.3, 51.8000000000002, 175, 79.8000000000002,
-35.7000000000007, 130.5, 116.8, -67.5, 164.5, 514.8, -326.1,
98.4000000000005, 160.2, 53.1999999999998, 283.6, -111.6, 127.8,
-17.3000000000002, 286.3, NA, NA, -102.900000000001, 125.2, -35.7999999999993,
-226.900000000001, 224.1, 123.2, -95.1999999999998, -115.500000000001,
166.200000000001, -13.6999999999998, -184.3, 232, 350.3, -840.900000000001, 424.500000000001, 61.7999999999993, -107, 230.400000000001, -395.200000000001,
239.400000000001, -145.1, 303.6, NA, NA, NA, 228.1, -160.999999999999,
-191.100000000001, 451.000000000001, -100.900000000001, -218.4,
-20.3000000000011, 281.700000000002, -179.900000000001, -170.6,
416.3, 118.3, -1191.2, 1265.4, -362.700000000002, -168.799999999999,
337.400000000001, -625.600000000001, 634.600000000001, -384.500000000001,
448.700000000001, NA, NA, -164.457840999999, 17.0793539999995,
95.9767880000009, 680.238166999999, -491.348690999999, -274.694009,
-256.332907, 469.62296, -146.431891, -41.0772019999995, -106.970104,
757.688263999999, -1689.214533, 2320.098952, -1446.97942, 516.384521,
-375.277650999999, 293.867029999999, 417.845195, 278.198807,
-968.592033999999, -314.195986, NA, NA, NA, 181.537194999999,
78.8974340000013, 584.261378999998, -1171.586858, 216.654681999999,
18.3611019999998, 725.955867, -616.054851, 105.354689000001,
-65.8929020000005, 864.658367999999, -2446.902797, 4009.313485,
-3767.078372, 1963.363941, -891.662171999999, 669.144680999999,
123.978165, -139.646388, -1246.790841, 654.396048, NA, 4937,
5005.1, 4970.3, 5060.7, 5115.3, 4943, 4994.8, 5169.8, 5249.6,
5213.9, 5344.4, 5461.2, 5393.7, 5558.2, 6073, 5746.9, 5845.3,
6005.5, 6058.7, 6342.3, 6230.7, 6358.5, 6341.2, 6627.5, 4187.5,
4296.004835, 4240.051829, 4201.178177, 4258.281313, 4995.622616,
5241.615228, 5212.913831, 4927.879527, 5112.468183, 5150.624948,
5147.704511, 5037.81397, 5685.611693, 4644.194883, 5922.877025,
5754.579747, 6102.66699, 6075.476582, 6342.153204, 7026.675021,
7989.395645, 7983.524235, 7663.456839), .Dim = c(24L, 7L), .Dimnames = list(
    NULL, c("DCred1", "DCred2", "DCred3", "DBoBC2", "DBoBC3",
    "CredL1", "BoBCL1")), .Tsp = c(2001.08333333333, 2003, 12
), class = c("mts", "ts"))

NB: the NAs in the dataset emanated from lagging or differencing the series

David's suggestion
 df<-data.frame(DCred1,DCred2,DCred3,DBoBC2,DBoBC3,CredL1,BoBCL1)
Error in data.frame(DCred1, DCred2, DCred3, DBoBC2, DBoBC3, CredL1, BoBCL1) :
  arguments imply differing number of rows: 23, 22, 21, 24

So I modified as follows:
length(DCred3)  # finding the minimum length of various series
[1] 21

# Then dataframe construction
dframe<- data.frame(Dcre1=DCred1[1:21],Dcre2=DCred2[1:21],Dcre3=DCred3[1:21], + Dbobc2 = DBoBC2 [1:21],Dbobc3=DBoBC3[1:21],CredL=CredL1[1:21],BoBCL=BoBCL1[1:21])
# Then estimated regression
regCred<- lm(Dcre1~Dcre2+Dcre3+Dbobc2+Dbobc3+CredL+BoBCL, data=dframe)
summary(regCred)
# Worked well as shown by results below
Call:
lm(formula = Dcre1 ~ Dcre2 + Dcre3 + Dbobc2 + Dbobc3 + CredL +
    BoBCL, data = dframe)
Residuals:
    Min      1Q  Median      3Q     Max
-69.516 -27.695  -8.085  13.851 107.276
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 159.32304  157.15209   1.014 0.327873
Dcre2        -0.75527    0.17262  -4.375 0.000634 ***
Dcre3        -0.21006    0.08656  -2.427 0.029329 *
Dbobc2        0.05111    0.06565   0.779 0.449197
Dbobc3        0.03106    0.03510   0.885 0.391108
CredL        -0.10967    0.04933  -2.223 0.043177 *
BoBCL         0.09756    0.03097   3.150 0.007087 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 52.3 on 14 degrees of freedom
Multiple R-squared: 0.9331,     Adjusted R-squared: 0.9044
F-statistic: 32.55 on 6 and 14 DF,  p-value: 1.911e-07

This is good, but couldn't I code the process for my 15 variable model?
Perhaps that is where the use of
Dcr<- lapply(..., function(x) ...)
comes in?

AK, if you spare some minutes, please use my dput data to illustrate the suggestion you made, I searched the lapply function (using ?? lapply) but could not get a handle of how to use it in my case. My dput data is as shown below.

         DCred1 DCred2  DCred3      DBoBC2      DBoBC3 CredL1   BoBCL1
Feb 2001   68.1     NA      NA          NA          NA 4937.0 4187.500
Mar 2001  -34.8 -102.9      NA  -164.45784          NA 5005.1 4296.005
Apr 2001   90.4  125.2   228.1    17.07935   181.53719 4970.3 4240.052
May 2001   54.6  -35.8  -161.0    95.97679    78.89743 5060.7 4201.178
Jun 2001 -172.3 -226.9  -191.1   680.23817   584.26138 5115.3 4258.281
Jul 2001   51.8  224.1   451.0  -491.34869 -1171.58686 4943.0 4995.623
Aug 2001  175.0  123.2  -100.9  -274.69401   216.65468 4994.8 5241.615
Sep 2001   79.8  -95.2  -218.4  -256.33291    18.36110 5169.8 5212.914
Oct 2001  -35.7 -115.5   -20.3   469.62296   725.95587 5249.6 4927.880
Nov 2001  130.5  166.2   281.7  -146.43189  -616.05485 5213.9 5112.468
Dec 2001  116.8  -13.7  -179.9   -41.07720   105.35469 5344.4 5150.625
Jan 2002  -67.5 -184.3  -170.6  -106.97010   -65.89290 5461.2 5147.705
Feb 2002  164.5  232.0   416.3   757.68826   864.65837 5393.7 5037.814
Mar 2002  514.8  350.3   118.3 -1689.21453 -2446.90280 5558.2 5685.612
Apr 2002 -326.1 -840.9 -1191.2  2320.09895  4009.31348 6073.0 4644.195
May 2002   98.4  424.5  1265.4 -1446.97942 -3767.07837 5746.9 5922.877
Jun 2002  160.2   61.8  -362.7   516.38452  1963.36394 5845.3 5754.580
Jul 2002   53.2 -107.0  -168.8  -375.27765  -891.66217 6005.5 6102.667
Aug 2002  283.6  230.4   337.4   293.86703   669.14468 6058.7 6075.477
Sep 2002 -111.6 -395.2  -625.6   417.84519   123.97817 6342.3 6342.153
Oct 2002  127.8  239.4   634.6   278.19881  -139.64639 6230.7 7026.675
Nov 2002  -17.3 -145.1  -384.5  -968.59203 -1246.79084 6358.5 7989.396
Dec 2002  286.3  303.6   448.7  -314.19599   654.39605 6341.2 7983.524
Jan 2003     NA     NA      NA          NA          NA 6627.5 7663.457

Thanks kindly. Lexi
        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

David Winsemius, MD
West Hartford, CT

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to