Respected Sir I fitted that model... lnrpe= a+bt and conducted sup F test since autocorelation is present in the data and AIC as you mentioned might not .... Is it OK... Since I am not well versed with time series econometrics can you please tell me if the work is now correct or not -- Please have a look at our new mission and contribute into it (cut and paste the link below in the address bar of your internet browser)
http://thesocialscienceinformer.blogspot.com/ Thanking you Ayanendu Sanyal PhD Scholar Institute for Social and Economic Change (ISEC) P.O- Nagarbhavi Bangalore-72 State- Karnataka Country- India PIN- 560072 www.isec.ac.in/phd.html http://ayanendusanyal.blogspot.com/
lnrpe 1.6113515 1.619601724 1.599889264 1.645954835 1.723777317 1.830606002 2.034751407 2.112377045 2.095050993 2.046822835 2.276628064 2.543864584 2.619425807 2.717786454 2.874537082 2.923223972 3.136825311 3.206377996 3.352655132 3.49032806 3.508602739 3.621768106 3.803617305 4.141727497 4.27471221 4.34523451 4.242555261 4.262046942 4.378894917 4.419018243 4.391496862 4.489015146 4.588180885 4.846861554 5.069645376 5.257766481 5.292695491 5.307844982 5.277006289 5.323613873 5.377629069 5.429256311 5.443411354 5.47242567 5.727392687 6.147054773
R version 2.14.1 (2011-12-22) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i386-pc-mingw32/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. Natural language support but running in an English locale R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > source("C:\\Documents and Settings\\ayaendu\\My Documents\\struc.R") Loading required package: MASS Loading required package: nnet Loading required package: survival Loading required package: splines Loading required package: zoo Attaching package: ‘zoo’ The following object(s) are masked from ‘package:base’: as.Date, as.Date.numeric Loading required package: sandwich Warning message: Overlapping confidence intervals > ayan <- read.table("ayan.txt", header=T) ## Fetching files saved in My > documents > ayan = ts(ayan, start=1, frequency=1) ## Setting the data into time series > data > trend = time (ayan) ## defining the explanatory variable > reg = lm(ayan~trend) ## regression lnrpe= a+bt > summary (reg) ## regression results summary Call: lm(formula = ayan ~ trend) Residuals: Min 1Q Median 3Q Max -0.35086 -0.11196 -0.01008 0.09193 0.38507 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.345373 0.049774 27.03 <2e-16 *** trend 0.101771 0.001844 55.19 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.166 on 44 degrees of freedom Multiple R-squared: 0.9858, Adjusted R-squared: 0.9854 F-statistic: 3046 on 1 and 44 DF, p-value: < 2.2e-16 > library (car) ## loading package to do dwtest > library (strucchange) ## loading package to do structural break > library (lmtest) ## loading package to do dwtest > dwtest (reg) ## for testing serial auto correrelation Durbin-Watson test data: reg DW = 0.4157, p-value = 1.405e-12 alternative hypothesis: true autocorrelation is greater than 0 > bp.ayan <- breakpoints(ayan ~ trend) ## searching for break points > summary (bp.ayan) ## checking the breakpoints and minimum AIC level Optimal (m+1)-segment partition: Call: breakpoints.formula(formula = ayan ~ trend) Breakpoints at observation number: m = 1 23 m = 2 23 33 m = 3 11 23 33 m = 4 11 23 33 40 m = 5 11 20 26 34 40 m = 6 8 14 20 26 34 40 Corresponding to breakdates: m = 1 23 m = 2 23 33 m = 3 11 23 33 m = 4 11 23 33 40 m = 5 11 20 26 34 40 m = 6 8 14 20 26 34 40 Fit: m 0 1 2 3 4 5 RSS 1.2131579 0.7466773 0.5243361 0.3570253 0.2712234 0.2589809 BIC -25.2008012 -36.0409283 -40.8160181 -47.0090984 -48.1669059 -38.8056613 m 6 RSS 0.2698858 BIC -25.4224766 > ci.ayan <- confint(bp.ayan)## confidence interval for the test > breakdates (ci.ayan) 2.5 % breakpoints 97.5 % 1 10 11 15 2 22 23 24 3 32 33 34 4 25 40 41 Warning message: Overlapping confidence intervals > ci.ayan ## displays the confidence interval Confidence intervals for breakpoints of optimal 5-segment partition: Call: confint.breakpointsfull(object = bp.ayan) Breakpoints at observation number: 2.5 % breakpoints 97.5 % 1 10 11 15 2 22 23 24 3 32 33 34 4 25 40 41 Corresponding to breakdates: 2.5 % breakpoints 97.5 % 1 10 11 15 2 22 23 24 3 32 33 34 4 25 40 41 Warning message: Overlapping confidence intervals > fs.ayan <- Fstats(ayan~trend, data = ayan, from = 0.1) ##sup F test h=0.1 > trimming parameter > plot (fs.ayan) > bp3 <- breakpoints(ayan ~ trend,breaks=3)## searching for break points with > breakpoints assumed as three since AIC min can overestimate in presence of > serial auto corelation > summary (bp3)## checking the break points Optimal (m+1)-segment partition: Call: breakpoints.formula(formula = ayan ~ trend, breaks = 3) Breakpoints at observation number: m = 1 23 m = 2 23 33 m = 3 11 23 33 Corresponding to breakdates: m = 1 23 m = 2 23 33 m = 3 11 23 33 Fit: m 0 1 2 3 RSS 1.2131579 0.7466773 0.5243361 0.3570253 BIC -25.2008012 -36.0409283 -40.8160181 -47.0090984 > ci.ayan1 <- confint(bp3)## confidence interval for the test when break points > are 3 > breakdates (ci.ayan1) ## displays the confidence interval 2.5 % breakpoints 97.5 % 1 10 11 15 2 22 23 24 3 32 33 34 > ci.ayan1 ## displays the confidence interval for three breaks Confidence intervals for breakpoints of optimal 4-segment partition: Call: confint.breakpointsfull(object = bp3) Breakpoints at observation number: 2.5 % breakpoints 97.5 % 1 10 11 15 2 22 23 24 3 32 33 34 Corresponding to breakdates: 2.5 % breakpoints 97.5 % 1 10 11 15 2 22 23 24 3 32 33 34 > plot (ayan) ## plots the series > lines (ci.ayan1) ## shows the breaks and the CIs for three breaks > >
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.