Respected Sir I tried the strucchange My data is attached. However I tried the attached commands (last save.txt) to perform Bai Perron 2003... I t worked well but in the end it is giving warning that overlapping confidence interval... I am not sure how to proceed... Please Help Me Thanking You Ayanendu Sanyal
-- Please have a look at our new mission and contribute into it (cut and paste the link below in the address bar of your internet browser) http://thesocialscienceinformer.blogspot.com/ Thanking you Ayanendu Sanyal PhD Scholar Institute for Social and Economic Change (ISEC) P.O- Nagarbhavi Bangalore-72 State- Karnataka Country- India PIN- 560072 www.isec.ac.in/phd.html http://ayanendusanyal.blogspot.com/
t lnrpe 1 1.6113515 2 1.619601724 3 1.599889264 4 1.645954835 5 1.723777317 6 1.830606002 7 2.034751407 8 2.112377045 9 2.095050993 10 2.046822835 11 2.276628064 12 2.543864584 13 2.619425807 14 2.717786454 15 2.874537082 16 2.923223972 17 3.136825311 18 3.206377996 19 3.352655132 20 3.49032806 21 3.508602739 22 3.621768106 23 3.803617305 24 4.141727497 25 4.27471221 26 4.34523451 27 4.242555261 28 4.262046942 29 4.378894917 30 4.419018243 31 4.391496862 32 4.489015146 33 4.588180885 34 4.846861554 35 5.069645376 36 5.257766481 37 5.292695491 38 5.307844982 39 5.277006289 40 5.323613873 41 5.377629069 42 5.429256311 43 5.443411354 44 5.47242567 45 5.727392687 46 6.147054773
> ayan <- read.table("ayan.txt", header=T) > x =read.table(file="ayan.txt",header=T) > library(strucchange) > bp.ayan <- breakpoints(x[["lnrpe"]] ~ x[["t"]]) > summary (bp.ayan) Optimal (m+1)-segment partition: Call: breakpoints.formula(formula = x[["lnrpe"]] ~ x[["t"]]) Breakpoints at observation number: m = 1 23 m = 2 23 33 m = 3 11 23 33 m = 4 11 23 33 40 m = 5 11 20 26 34 40 m = 6 8 14 20 26 34 40 Corresponding to breakdates: m = 1 0.5 m = 2 0.5 m = 3 0.239130434782609 0.5 m = 4 0.239130434782609 0.5 m = 5 0.239130434782609 0.434782608695652 0.565217391304348 m = 6 0.173913043478261 0.304347826086956 0.434782608695652 0.565217391304348 m = 1 m = 2 0.717391304347826 m = 3 0.717391304347826 m = 4 0.717391304347826 0.869565217391304 m = 5 0.739130434782609 0.869565217391304 m = 6 0.739130434782609 0.869565217391304 Fit: m 0 1 2 3 4 5 RSS 1.2131579 0.7466773 0.5243361 0.3570253 0.2712234 0.2589809 BIC -25.2008012 -36.0409283 -40.8160181 -47.0090984 -48.1669059 -38.8056613 m 6 RSS 0.2698858 BIC -25.4224766 > plot (bp.ayan) > breakdates(bp.ayan) [1] 0.2391304 0.5000000 0.7173913 0.8695652 > ci.ayan <- confint(bp.ayan) > breakdates(ci.ayan) 2.5 % breakpoints 97.5 % 1 0.2173913 0.2391304 0.3260870 2 0.4782609 0.5000000 0.5217391 3 0.6956522 0.7173913 0.7391304 4 0.5434783 0.8695652 0.8913043 Warning message: Overlapping confidence intervals > ci.ayan Confidence intervals for breakpoints of optimal 5-segment partition: Call: confint.breakpointsfull(object = bp.ayan) Breakpoints at observation number: 2.5 % breakpoints 97.5 % 1 10 11 15 2 22 23 24 3 32 33 34 4 25 40 41 Corresponding to breakdates: 2.5 % breakpoints 97.5 % 1 0.2173913 0.2391304 0.3260870 2 0.4782609 0.5000000 0.5217391 3 0.6956522 0.7173913 0.7391304 4 0.5434783 0.8695652 0.8913043 Warning message: Overlapping confidence intervals
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.