Dear All, I have just estimated this model:
----------------------------------------------------------- Logistic Regression Model lrm(formula = Y ~ X16, x = T, y = T) Model Likelihood Discrimination Rank Discrim. Ratio Test Indexes Indexes Obs 82 LR chi2 5.58 R2 0.088 C 0.607 0 46 d.f. 1 g 0.488 Dxy 0.215 1 36 Pr(> chi2) 0.0182 gr 1.629 gamma 0.589 max |deriv| 9e-11 gp 0.107 tau-a 0.107 Brier 0.231 Coef S.E. Wald Z Pr(>|Z|) Intercept -1.3218 0.5627 -2.35 0.0188 X16=1 1.3535 0.6166 2.20 0.0282 ----------------------------------------------------------- Analyzing the goodness of fit: ----------------------------------------------------------- > resid(model.lrm,'gof') Sum of squared errors Expected value|H0 SD 1.890393e+01 1.890393e+01 6.073415e-16 Z P -8.638125e+04 0.000000e+00 > ----------------------------------------------------------- >From the above calculated p-value (0.000000e+00), one should discard this model. However, there is something that is puzzling me: If the 'Expected value|H0' is so coincidental with the 'Sum of squared errors', why should one discard the model? I am certainly missing something. Thanks in advance, Paul ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.