Dear Miya,

Notice the very strong negative correlation between the random intercept and 
the random slope in the lme() model. That is usually an indication of problems 
(in this case overfitting). If you drop the random slope, then both models 
yield the same parameters.

Plotting the data reviels a much better model specification.

dat <- read.table(file = 
"http://www.bio.ic.ac.uk/research/mjcraw/therbook/data/fertilizer.txt";, header 
= TRUE)
library(ggplot2)
ggplot(dat, aes(x = week, y = root, group = plant, colour = fertilizer)) + 
geom_line()

lmer(root~fertilizer + week +(1|plant),data=dat)

Best regards,

Thierry

PS Use R-sig-mixedmodels for questions on mixed models

> -----Oorspronkelijk bericht-----
> Van: r-help-boun...@r-project.org [mailto:r-help-boun...@r-project.org]
> Namens Taro Miyagawa
> Verzonden: woensdag 1 juni 2011 7:58
> Aan: r-help@r-project.org
> Onderwerp: [R] different results from lme() and lmer()
> 
> 
> Hello R-help,
> I'm studying an example in the R book.
> The data file is available from the link
> below.http://www.bio.ic.ac.uk/research/mjcraw/therbook/data/fertilizer.txt
> Could you explain Why the results from lme() and lmer() are different in the
> following case? In other examples, I can get the same results using the two
> functions, but not here...
> Thank you.Miya
> 
> library(lme4)library(nlme)# object dat contains the data
> > summary(lme(root~fertilizer,random=~week|plant,data=dat))Linear mixed-
> effects model fit by REML Data: dat        AIC      BIC    logLik  171.0236 
> 183.3863 -
> 79.51181
> Random effects: Formula: ~week | plant Structure: General positive-definite,
> Log-Cholesky parametrization            StdDev    Corr  (Intercept) 2.8639832
> (Intr)week        0.9369412 -0.999Residual    0.4966308
> Fixed effects: root ~ fertilizer                       Value Std.Error DF   
> t-value p-
> value(Intercept)        2.799710 0.1438367 48 19.464499   
> 0e+00fertilizercontrol -
> 1.039383 0.2034158 10 -5.109645   5e-
> 04 Correlation:                   (Intr)fertilizercontrol -0.707
> Standardized Within-Group Residuals:       Min         Q1        Med         
> Q3        Max -
> 1.9928118 -0.6586834 -0.1004301  0.6949714  2.0225381
> Number of Observations: 60Number of Groups: 12
> 
> > lmer(root~fertilizer+(week|plant),data=dat)Linear mixed model fit by
> REML Formula: root ~ fertilizer + (week | plant)    Data: dat    AIC BIC 
> logLik
> deviance REMLdev 174.4 187 -81.21    159.7   162.4Random
> effects: Groups   Name        Variance   Std.Dev.   Corr   plant    
> (Intercept)
> 4.1416e-18 2.0351e-09                 week        8.7452e-01 9.3516e-01
> 0.000  Residual             2.2457e-01 4.7389e-01       Number of obs: 60, 
> groups:
> plant, 12
> Fixed effects:                  Estimate Std. Error t value(Intercept)        
> -
> 0.1847     0.2024  -0.913fertilizercontrol  -0.7612     0.2862  -2.660
> Correlation of Fixed Effects:            (Intr)frtlzrcntrl -0.707
> 
> ______________________________________________
> R-help@r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to