Hello R-help, I'm studying an example in the R book. The data file is available from the link below.http://www.bio.ic.ac.uk/research/mjcraw/therbook/data/fertilizer.txt Could you explain Why the results from lme() and lmer() are different in the following case? In other examples, I can get the same results using the two functions, but not here... Thank you.Miya
library(lme4)library(nlme)# object dat contains the data > summary(lme(root~fertilizer,random=~week|plant,data=dat))Linear mixed-effects > model fit by REML Data: dat AIC BIC logLik 171.0236 183.3863 > -79.51181 Random effects: Formula: ~week | plant Structure: General positive-definite, Log-Cholesky parametrization StdDev Corr (Intercept) 2.8639832 (Intr)week 0.9369412 -0.999Residual 0.4966308 Fixed effects: root ~ fertilizer Value Std.Error DF t-value p-value(Intercept) 2.799710 0.1438367 48 19.464499 0e+00fertilizercontrol -1.039383 0.2034158 10 -5.109645 5e-04 Correlation: (Intr)fertilizercontrol -0.707 Standardized Within-Group Residuals: Min Q1 Med Q3 Max -1.9928118 -0.6586834 -0.1004301 0.6949714 2.0225381 Number of Observations: 60Number of Groups: 12 > lmer(root~fertilizer+(week|plant),data=dat)Linear mixed model fit by > REML Formula: root ~ fertilizer + (week | plant) Data: dat AIC BIC > logLik deviance REMLdev 174.4 187 -81.21 159.7 162.4Random > effects: Groups Name Variance Std.Dev. Corr plant > (Intercept) 4.1416e-18 2.0351e-09 week 8.7452e-01 > 9.3516e-01 0.000 Residual 2.2457e-01 4.7389e-01 Number of > obs: 60, groups: plant, 12 Fixed effects: Estimate Std. Error t value(Intercept) -0.1847 0.2024 -0.913fertilizercontrol -0.7612 0.2862 -2.660 Correlation of Fixed Effects: (Intr)frtlzrcntrl -0.707 ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.