Here is a simple approach that uses bootstrapping (this could probably be improved by using better bootstrap estimates and not ignoring the dependence between points):
xx <- faithful$eruptions fit1 <- density(xx) fit2 <- replicate(10000, { x <- sample(xx, replace=TRUE); density(x, from=min(fit1$x), to=max(fit1$x))$y } ) fit3 <- apply(fit2, 1, quantile, c(0.025,0.975) ) plot(fit1, ylim=range(fit3)) polygon( c(fit1$x, rev(fit1$x)), c(fit3[1,], rev(fit3[2,])), col='grey', border=F) lines(fit1) -- Gregory (Greg) L. Snow Ph.D. Statistical Data Center Intermountain Healthcare greg.s...@imail.org 801.408.8111 > -----Original Message----- > From: r-help-boun...@r-project.org [mailto:r-help-boun...@r- > project.org] On Behalf Of David Croll > Sent: Friday, September 03, 2010 9:23 AM > To: r-help@r-project.org > Subject: [R] density() with confidence intervals > > > > Hello R users & R friends, > > > I just want to ask you if density() can produce a confidence interval, > indicating how "certain" the density() line follows the true frequency > distribution based on the sample you feed into density(). > > I've heard of loess.predict(loess(y ~ x), se=TRUE) which gives you a SE > estimate of the smoothed scatterplot - but density() kernel smoothing > is not the same as locally-weighted polynomial scatterplot smoothing... > > > Feel free to ask me if I did not put my question into clear words :) > > > Kind regards & thanks in advance, > > > David > -- > Sicherer, schneller und einfacher. Die aktuellen Internet-Browser - > jetzt kostenlos herunterladen! http://portal.gmx.net/de/go/chbrowser > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting- > guide.html > and provide commented, minimal, self-contained, reproducible code. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.