Hello R users & R friends,


I just want to ask you if density() can produce a confidence interval, 
indicating how "certain" the density() line follows the true frequency 
distribution based on the sample you feed into density().

I've heard of loess.predict(loess(y ~ x), se=TRUE) which gives you a SE 
estimate of the smoothed scatterplot - but density() kernel smoothing is not 
the same as locally-weighted polynomial scatterplot smoothing...


Feel free to ask me if I did not put my question into clear words :)


Kind regards & thanks in advance,


David
-- 
Sicherer, schneller und einfacher. Die aktuellen Internet-Browser -
jetzt kostenlos herunterladen! http://portal.gmx.net/de/go/chbrowser

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to