Is there a numpy function for testing floating point equality that returns a boolean array?
I'm aware of np.allclose, but I need a boolean array. Properly handling NaN's and Inf's (as allclose does) would be a nice bonus. I wrote the function below to do this, but I suspect there's a method in numpy that I missed. import numpy as np def close(a, b, rtol=1.e-5, atol=1.e-8, check_invalid=True): """Similar to numpy.allclose, but returns a boolean array. See numpy.allclose for an explanation of *rtol* and *atol*.""" def within_tol(x, y, atol, rtol): return np.less_equal(np.abs(x-y), atol + rtol * np.abs(y)) x = np.array(a, copy=False) y = np.array(b, copy=False) if not check_invalid: return within_tol(x, y, atol, rtol) xfin = np.isfinite(x) yfin = np.isfinite(y) if np.all(xfin) and np.all(yfin): return within_tol(x, y, atol, rtol) else: # Avoid subtraction with infinite/nan values... cond = np.zeros(np.broadcast(x, y).shape, dtype=np.bool) mask = xfin & yfin cond[mask] = within_tol(x[mask], y[mask], atol, rtol) # Inf and -Inf equality... cond[~mask] = (x[~mask] == y[~mask]) # NaN equality... cond[np.isnan(x) & np.isnan(y)] = True return cond # A few quick tests... assert np.any(close(0.300001, np.array([0.1, 0.2, 0.3, 0.4]))) x = np.array([0.1, np.nan, np.inf, -np.inf]) y = np.array([0.1000001, np.nan, np.inf, -np.inf]) assert np.all(close(x, y)) x = np.array([0.1, 0.2, np.inf]) y = np.array([0.101, np.nan, 0.2]) assert not np.all(close(x, y)) Thanks, -Joe
_______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion