Dear all, i am writing a program for data analysis. One of the functions of this program gives the possibility to fit the functions. I therefore use the recipe described in : http://www.scipy.org/Cookbook/FittingData<http://www.scipy.org/Cookbook/FittingData> under the section "Simplifying the syntax". The code looks like this:
class Parameter: def __init__(self, value): self.value = value self.fixed=False def set(self, value): if not self.fixed: self.value = value def __call__(self): return self.value def fit(function, parameters, y, x = None): def f(params): i = 0 for p in parameters: p.set(params[i]) i += 1 return y - function(x) if x is None: x = arange(y.shape[0]) p = [param() for param in parameters] out=optimize.leastsq(f, p, full_output=1) One thing that i would like to know is how can i get the error on the parameters ? From what i understood from the "Cookbook" page, and from the scipy manual ( http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html#scipy.optimize.leastsq), the second argument returned by the leastsq function gives access to these errors. std_error=std(y-function(x)) param_error=sqrt(diagonal(out[1])*std_error) The param_errors that i get in this case are extremely small. Much smaller than what i expected, and much smaller than what i can get fitting the function with matlab. So i guess i made an error here. Can someone tell me how i should do to retrieve the parameter errors ? Bests, Pierre
_______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion