On 13.11.18 08:04, Yogesh Narayan Gaur wrote:
> Hi Frieder,
>
> Thanks for review.
>
>> -----Original Message-----
>> From: Schrempf Frieder [mailto:[email protected]]
>> Sent: Wednesday, November 7, 2018 9:52 PM
>> To: Yogesh Narayan Gaur <[email protected]>; linux-
>> [email protected]; [email protected]; [email protected];
>> [email protected]; [email protected]; [email protected]
>> Cc: [email protected]; [email protected]; [email protected]; linux-
>> [email protected]; [email protected];
>> [email protected]; [email protected]
>> Subject: Re: [PATCH RESEND v4 1/5] spi: spi-mem: Add driver for NXP FlexSPI
>> controller
>>
>> Hi Yogesh,
>>
>> I didn't have time to look at all of the code, but nevertheless here are some
>> comments.
>>
>> On 23.10.18 10:56, Yogesh Narayan Gaur wrote:
>>> - Add driver for NXP FlexSPI host controller
>>>
>>> (0) What is the FlexSPI controller?
>>> FlexSPI is a flexsible SPI host controller which supports two SPI
>>> channels and up to 4 external devices. Each channel supports
>>> Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
>>> data lines) i.e. FlexSPI acts as an interface to external devices,
>>> maximum 4, each with up to 8 bidirectional data lines.
>>>
>>> It uses new SPI memory interface of the SPI framework to issue
>>> flash memory operations to up to four connected flash
>>> devices (2 buses with 2 CS each).
>>>
>>> (1) Tested this driver with the mtd_debug and JFFS2 filesystem utility
>>> on NXP LX2160ARDB and LX2160AQDS targets.
>>> LX2160ARDB is having two NOR slave device connected on single bus A
>>> i.e. A0 and A1 (CS0 and CS1).
>>> LX2160AQDS is having two NOR slave device connected on separate buses
>>> one flash on A0 and second on B1 i.e. (CS0 and CS3).
>>> Verified this driver on following SPI NOR flashes:
>>> Micron, mt35xu512ab, [Read - 1 bit mode]
>>> Cypress, s25fl512s, [Read - 1/2/4 bit mode]
>>>
>>> Signed-off-by: Yogesh Gaur <[email protected]>
>>> ---
>>> Changes for v4:
>>> - Incorporate Boris review comments
>>> * Use readl_poll_timeout() instead of busy looping.
>>> * Re-define register masking as per comment.
>>> * Drop fspi_devtype enum.
>>> Changes for v3:
>>> - Added endianness flag in platform specific structure instead of DTS.
>>> - Modified nxp_fspi_read_ahb(), removed remapping code.
>>> - Added Boris and Frieder as Author and provided reference of
>>> spi-fsl-qspi.c Changes for v2:
>>> - Incorporated Boris review comments.
>>> - Remove dependency of driver over connected flash device size.
>>> - Modified the logic to select requested CS.
>>> - Remove SPI-Octal Macros.
>>>
>>> drivers/spi/Kconfig | 10 +
>>> drivers/spi/Makefile | 1 +
>>> drivers/spi/spi-nxp-fspi.c | 1158
>> ++++++++++++++++++++++++++++++++++++++++++++
>>> 3 files changed, 1169 insertions(+)
>>> create mode 100644 drivers/spi/spi-nxp-fspi.c
>>>
>>> diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig index
>>> ad5d68e..68da874 100644
>>> --- a/drivers/spi/Kconfig
>>> +++ b/drivers/spi/Kconfig
>>> @@ -251,6 +251,16 @@ config SPI_FSL_LPSPI
>>> help
>>> This enables Freescale i.MX LPSPI controllers in master mode.
>>>
>>> +config SPI_NXP_FLEXSPI
>>> + tristate "NXP Flex SPI controller"
>>> + depends on ARCH_LAYERSCAPE || HAS_IOMEM
>>> + help
>>> + This enables support for the Flex SPI controller in master mode.
>>> + Up to four slave devices can be connected on two buses with two
>>> + chipselects each.
>>> + This controller does not support generic SPI messages and only
>>> + supports the high-level SPI memory interface.
>>> +
>>> config SPI_GPIO
>>> tristate "GPIO-based bitbanging SPI Master"
>>> depends on GPIOLIB || COMPILE_TEST
>>> diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile index
>>> cb1f437..52c9f18 100644
>>> --- a/drivers/spi/Makefile
>>> +++ b/drivers/spi/Makefile
>>> @@ -59,6 +59,7 @@ obj-$(CONFIG_SPI_MPC52xx) += spi-
>> mpc52xx.o
>>> obj-$(CONFIG_SPI_MT65XX) += spi-mt65xx.o
>>> obj-$(CONFIG_SPI_MXS) += spi-mxs.o
>>> obj-$(CONFIG_SPI_NUC900) += spi-nuc900.o
>>> +obj-$(CONFIG_SPI_NXP_FLEXSPI) += spi-nxp-fspi.o
>>> obj-$(CONFIG_SPI_OC_TINY) += spi-oc-tiny.o
>>> spi-octeon-objs := spi-cavium.o spi-cavium-
>> octeon.o
>>> obj-$(CONFIG_SPI_OCTEON) += spi-octeon.o
>>> diff --git a/drivers/spi/spi-nxp-fspi.c b/drivers/spi/spi-nxp-fspi.c
>>> new file mode 100644 index 0000000..e5188b2
>>> --- /dev/null
>>> +++ b/drivers/spi/spi-nxp-fspi.c
>>> @@ -0,0 +1,1158 @@
>>> +// SPDX-License-Identifier: GPL-2.0+
>>> +
>>> +/*
>>> + * NXP FlexSPI(FSPI) controller driver.
>>> + *
>>> + * Copyright 2018 NXP.
>>> + *
>>> + * FlexSPI is a flexsible SPI host controller which supports two SPI
>>> + * channels and up to 4 external devices. Each channel supports
>>> + * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
>>> + * data lines).
>>> + *
>>> + * FlexSPI controller is driven by the LUT(Look-up Table) registers
>>> + * LUT registers are a look-up-table for sequences of instructions.
>>> + * A valid sequence consists of four LUT registers.
>>> + * Maximum 32 LUT sequences can be programmed simultaneously.
>>> + *
>>> + * LUTs are being created at run-time based on the commands passed
>>> + * from the spi-mem framework, thus using single LUT index.
>>> + *
>>> + * Software triggered Flash read/write access by IP Bus.
>>> + *
>>> + * Memory mapped read access by AHB Bus.
>>> + *
>>> + * Based on SPI MEM interface and spi-fsl-qspi.c driver.
>>> + *
>>> + * Author:
>>> + * Yogesh Gaur <[email protected]>
>>> + * Boris Brezillion <[email protected]>
>>> + * Frieder Schrempf <[email protected]>
>>> + */
>>> +
>>> +#include <linux/bitops.h>
>>> +#include <linux/clk.h>
>>> +#include <linux/completion.h>
>>> +#include <linux/delay.h>
>>> +#include <linux/err.h>
>>> +#include <linux/errno.h>
>>> +#include <linux/interrupt.h>
>>> +#include <linux/io.h>
>>> +#include <linux/jiffies.h>
>>> +#include <linux/kernel.h>
>>> +#include <linux/module.h>
>>> +#include <linux/mutex.h>
>>> +#include <linux/of.h>
>>> +#include <linux/of_device.h>
>>> +#include <linux/platform_device.h>
>>> +#include <linux/pm_qos.h>
>>> +#include <linux/sizes.h>
>>> +#include <linux/iopoll.h>
>>
>> If you would move this below io.h, then all the includes would stay in
>> alphabetical order ;)
>>
> Ok, would change for next version.
>
>>> +
>>> +#include <linux/spi/spi.h>
>>> +#include <linux/spi/spi-mem.h>
>>> +
>>> +/*
>>> + * The driver only uses one single LUT entry, that is updated on
>>> + * each call of exec_op(). Index 0 is preset at boot with a basic
>>> + * read operation, so let's use the last entry (31).
>>> + */
>>> +#define SEQID_LUT 31
>>> +
>>> +/* Registers used by the driver */
>>> +#define FSPI_MCR0 0x00
>>> +#define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24)
>>> +#define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16)
>>> +#define FSPI_MCR0_LEARN_EN BIT(15)
>>> +#define FSPI_MCR0_SCRFRUN_EN BIT(14)
>>> +#define FSPI_MCR0_OCTCOMB_EN BIT(13)
>>> +#define FSPI_MCR0_DOZE_EN BIT(12)
>>> +#define FSPI_MCR0_HSEN BIT(11)
>>> +#define FSPI_MCR0_SERCLKDIV BIT(8)
>>> +#define FSPI_MCR0_ATDF_EN BIT(7)
>>> +#define FSPI_MCR0_ARDF_EN BIT(6)
>>> +#define FSPI_MCR0_RXCLKSRC(x) ((x) << 4)
>>> +#define FSPI_MCR0_END_CFG(x) ((x) << 2)
>>> +#define FSPI_MCR0_MDIS BIT(1)
>>> +#define FSPI_MCR0_SWRST BIT(0)
>>> +
>>> +#define FSPI_MCR1 0x04
>>> +#define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16)
>>> +#define FSPI_MCR1_AHB_TIMEOUT(x) (x)
>>> +
>>> +#define FSPI_MCR2 0x08
>>> +#define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24)
>>> +#define FSPI_MCR2_SAMEDEVICEEN BIT(15)
>>> +#define FSPI_MCR2_CLRLRPHS BIT(14)
>>> +#define FSPI_MCR2_ABRDATSZ BIT(8)
>>> +#define FSPI_MCR2_ABRLEARN BIT(7)
>>> +#define FSPI_MCR2_ABR_READ BIT(6)
>>> +#define FSPI_MCR2_ABRWRITE BIT(5)
>>> +#define FSPI_MCR2_ABRDUMMY BIT(4)
>>> +#define FSPI_MCR2_ABR_MODE BIT(3)
>>> +#define FSPI_MCR2_ABRCADDR BIT(2)
>>> +#define FSPI_MCR2_ABRRADDR BIT(1)
>>> +#define FSPI_MCR2_ABR_CMD BIT(0)
>>> +
>>> +#define FSPI_AHBCR 0x0c
>>> +#define FSPI_AHBCR_RDADDROPT BIT(6)
>>> +#define FSPI_AHBCR_PREF_EN BIT(5)
>>> +#define FSPI_AHBCR_BUFF_EN BIT(4)
>>> +#define FSPI_AHBCR_CACH_EN BIT(3)
>>> +#define FSPI_AHBCR_CLRTXBUF BIT(2)
>>> +#define FSPI_AHBCR_CLRRXBUF BIT(1)
>>> +#define FSPI_AHBCR_PAR_EN BIT(0)
>>> +
>>> +#define FSPI_INTEN 0x10
>>> +#define FSPI_INTEN_SCLKSBWR BIT(9)
>>> +#define FSPI_INTEN_SCLKSBRD BIT(8)
>>> +#define FSPI_INTEN_DATALRNFL BIT(7)
>>> +#define FSPI_INTEN_IPTXWE BIT(6)
>>> +#define FSPI_INTEN_IPRXWA BIT(5)
>>> +#define FSPI_INTEN_AHBCMDERR BIT(4)
>>> +#define FSPI_INTEN_IPCMDERR BIT(3)
>>> +#define FSPI_INTEN_AHBCMDGE BIT(2)
>>> +#define FSPI_INTEN_IPCMDGE BIT(1)
>>> +#define FSPI_INTEN_IPCMDDONE BIT(0)
>>> +
>>> +#define FSPI_INTR 0x14
>>> +#define FSPI_INTR_SCLKSBWR BIT(9)
>>> +#define FSPI_INTR_SCLKSBRD BIT(8)
>>> +#define FSPI_INTR_DATALRNFL BIT(7)
>>> +#define FSPI_INTR_IPTXWE BIT(6)
>>> +#define FSPI_INTR_IPRXWA BIT(5)
>>> +#define FSPI_INTR_AHBCMDERR BIT(4)
>>> +#define FSPI_INTR_IPCMDERR BIT(3)
>>> +#define FSPI_INTR_AHBCMDGE BIT(2)
>>> +#define FSPI_INTR_IPCMDGE BIT(1)
>>> +#define FSPI_INTR_IPCMDDONE BIT(0)
>>> +
>>> +#define FSPI_LUTKEY 0x18
>>> +#define FSPI_LUTKEY_VALUE 0x5AF05AF0
>>> +
>>> +#define FSPI_LCKCR 0x1C
>>> +
>>> +#define FSPI_LCKER_LOCK 0x1
>>> +#define FSPI_LCKER_UNLOCK 0x2
>>> +
>>> +#define FSPI_BUFXCR_INVALID_MSTRID 0xE
>>> +#define FSPI_AHBRX_BUF0CR0 0x20
>>> +#define FSPI_AHBRX_BUF1CR0 0x24
>>> +#define FSPI_AHBRX_BUF2CR0 0x28
>>> +#define FSPI_AHBRX_BUF3CR0 0x2C
>>> +#define FSPI_AHBRX_BUF4CR0 0x30
>>> +#define FSPI_AHBRX_BUF5CR0 0x34
>>> +#define FSPI_AHBRX_BUF6CR0 0x38
>>> +#define FSPI_AHBRX_BUF7CR0 0x3C
>>> +#define FSPI_AHBRXBUF0CR7_PREF BIT(31)
>>> +
>>> +#define FSPI_AHBRX_BUF0CR1 0x40
>>> +#define FSPI_AHBRX_BUF1CR1 0x44
>>> +#define FSPI_AHBRX_BUF2CR1 0x48
>>> +#define FSPI_AHBRX_BUF3CR1 0x4C
>>> +#define FSPI_AHBRX_BUF4CR1 0x50
>>> +#define FSPI_AHBRX_BUF5CR1 0x54
>>> +#define FSPI_AHBRX_BUF6CR1 0x58
>>> +#define FSPI_AHBRX_BUF7CR1 0x5C
>>> +
>>> +#define FSPI_FLSHA1CR0 0x60
>>> +#define FSPI_FLSHA2CR0 0x64
>>> +#define FSPI_FLSHB1CR0 0x68
>>> +#define FSPI_FLSHB2CR0 0x6C
>>> +#define FSPI_FLSHXCR0_SZ_KB 10
>>> +#define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB)
>>> +
>>> +#define FSPI_FLSHA1CR1 0x70
>>> +#define FSPI_FLSHA2CR1 0x74
>>> +#define FSPI_FLSHB1CR1 0x78
>>> +#define FSPI_FLSHB2CR1 0x7C
>>> +#define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16)
>>> +#define FSPI_FLSHXCR1_CAS(x) ((x) << 11)
>>> +#define FSPI_FLSHXCR1_WA BIT(10)
>>> +#define FSPI_FLSHXCR1_TCSH(x) ((x) << 5)
>>> +#define FSPI_FLSHXCR1_TCSS(x) (x)
>>> +
>>> +#define FSPI_FLSHA1CR2 0x80
>>> +#define FSPI_FLSHA2CR2 0x84
>>> +#define FSPI_FLSHB1CR2 0x88
>>> +#define FSPI_FLSHB2CR2 0x8C
>>> +#define FSPI_FLSHXCR2_CLRINSP BIT(24)
>>> +#define FSPI_FLSHXCR2_AWRWAIT BIT(16)
>>> +#define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
>>> +#define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
>>> +#define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
>>> +#define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
>>> +
>>> +#define FSPI_IPCR0 0xA0
>>> +
>>> +#define FSPI_IPCR1 0xA4
>>> +#define FSPI_IPCR1_IPAREN BIT(31)
>>> +#define FSPI_IPCR1_SEQNUM_SHIFT 24
>>> +#define FSPI_IPCR1_SEQID_SHIFT 16
>>> +#define FSPI_IPCR1_IDATSZ(x) (x)
>>> +
>>> +#define FSPI_IPCMD 0xB0
>>> +#define FSPI_IPCMD_TRG BIT(0)
>>> +
>>> +#define FSPI_DLPR 0xB4
>>> +
>>> +#define FSPI_IPRXFCR 0xB8
>>> +#define FSPI_IPRXFCR_CLR BIT(0)
>>> +#define FSPI_IPRXFCR_DMA_EN BIT(1)
>>> +#define FSPI_IPRXFCR_WMRK(x) ((x) << 2)
>>> +
>>> +#define FSPI_IPTXFCR 0xBC
>>> +#define FSPI_IPTXFCR_CLR BIT(0)
>>> +#define FSPI_IPTXFCR_DMA_EN BIT(1)
>>> +#define FSPI_IPTXFCR_WMRK(x) ((x) << 2)
>>> +
>>> +#define FSPI_DLLACR 0xC0
>>> +#define FSPI_DLLACR_OVRDEN BIT(8)
>>> +
>>> +#define FSPI_DLLBCR 0xC4
>>> +#define FSPI_DLLBCR_OVRDEN BIT(8)
>>> +
>>> +#define FSPI_STS0 0xE0
>>> +#define FSPI_STS0_DLPHB(x) ((x) << 8)
>>> +#define FSPI_STS0_DLPHA(x) ((x) << 4)
>>> +#define FSPI_STS0_CMD_SRC(x) ((x) << 2)
>>> +#define FSPI_STS0_ARB_IDLE BIT(1)
>>> +#define FSPI_STS0_SEQ_IDLE BIT(0)
>>> +
>>> +#define FSPI_STS1 0xE4
>>> +#define FSPI_STS1_IP_ERRCD(x) ((x) << 24)
>>> +#define FSPI_STS1_IP_ERRID(x) ((x) << 16)
>>> +#define FSPI_STS1_AHB_ERRCD(x) ((x) << 8)
>>> +#define FSPI_STS1_AHB_ERRID(x) (x)
>>> +
>>> +#define FSPI_AHBSPNST 0xEC
>>> +#define FSPI_AHBSPNST_DATLFT(x) ((x) << 16)
>>> +#define FSPI_AHBSPNST_BUFID(x) ((x) << 1)
>>> +#define FSPI_AHBSPNST_ACTIVE BIT(0)
>>> +
>>> +#define FSPI_IPRXFSTS 0xF0
>>> +#define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16)
>>> +#define FSPI_IPRXFSTS_FILL(x) (x)
>>> +
>>> +#define FSPI_IPTXFSTS 0xF4
>>> +#define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16)
>>> +#define FSPI_IPTXFSTS_FILL(x) (x)
>>> +
>>> +#define FSPI_RFDR 0x100
>>> +#define FSPI_TFDR 0x180
>>> +
>>> +#define FSPI_LUT_BASE 0x200
>>> +#define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
>>> +#define FSPI_LUT_REG(idx) \
>>> + (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
>>> +
>>> +/* register map end */
>>> +
>>> +/* Instruction set for the LUT register. */
>>> +#define LUT_STOP 0x00
>>> +#define LUT_CMD 0x01
>>> +#define LUT_ADDR 0x02
>>> +#define LUT_CADDR_SDR 0x03
>>> +#define LUT_MODE 0x04
>>> +#define LUT_MODE2 0x05
>>> +#define LUT_MODE4 0x06
>>> +#define LUT_MODE8 0x07
>>> +#define LUT_NXP_WRITE 0x08
>>> +#define LUT_NXP_READ 0x09
>>> +#define LUT_LEARN_SDR 0x0A
>>> +#define LUT_DATSZ_SDR 0x0B
>>> +#define LUT_DUMMY 0x0C
>>> +#define LUT_DUMMY_RWDS_SDR 0x0D
>>> +#define LUT_JMP_ON_CS 0x1F
>>> +#define LUT_CMD_DDR 0x21
>>> +#define LUT_ADDR_DDR 0x22
>>> +#define LUT_CADDR_DDR 0x23
>>> +#define LUT_MODE_DDR 0x24
>>> +#define LUT_MODE2_DDR 0x25
>>> +#define LUT_MODE4_DDR 0x26
>>> +#define LUT_MODE8_DDR 0x27
>>> +#define LUT_WRITE_DDR 0x28
>>> +#define LUT_READ_DDR 0x29
>>> +#define LUT_LEARN_DDR 0x2A
>>> +#define LUT_DATSZ_DDR 0x2B
>>> +#define LUT_DUMMY_DDR 0x2C
>>> +#define LUT_DUMMY_RWDS_DDR 0x2D
>>> +
>>> +/*
>>> + * Calculate number of required PAD bits for LUT register.
>>> + *
>>> + * The pad stands for the number of IO lines [0:7].
>>> + * For example, the octal read needs eight IO lines,
>>> + * so you should use LUT_PAD(8). This macro
>>> + * returns 3 i.e. use eight (2^3) IP lines for read.
>>> + */
>>> +#define LUT_PAD(x) (fls(x) - 1)
>>> +
>>> +/*
>>> + * Macro for constructing the LUT entries with the following
>>> + * register layout:
>>> + *
>>> + * ---------------------------------------------------
>>> + * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
>>> + * ---------------------------------------------------
>>> + */
>>> +#define PAD_SHIFT 8
>>> +#define INSTR_SHIFT 10
>>> +#define OPRND_SHIFT 16
>>> +
>>> +/* Macros for constructing the LUT register. */
>>> +#define LUT_DEF(idx, ins, pad, opr) \
>>> + ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
>>> + (opr)) << (((idx) % 2) * OPRND_SHIFT))
>>> +
>>> +/* Oprands for the LUT register. */
>>
>> s/Oprands/Operands
> Ok
>
>>
>>> +#define ADDR8BIT 0x08
>>> +#define ADDR16BIT 0x10
>>> +#define ADDR24BIT 0x18
>>> +#define ADDR32BIT 0x20
>>> +
>>> +#define POLL_TOUT_US 5000
>>> +
>>> +struct nxp_fspi_devtype_data {
>>> + unsigned int rxfifo;
>>> + unsigned int txfifo;
>>> + unsigned int ahb_buf_size;
>>> + unsigned int quirks;
>>> + bool little_endian;
>>> +};
>>> +
>>> +static const struct nxp_fspi_devtype_data lx2160a_data = {
>>> + .rxfifo = SZ_512, /* (64 * 64 bits) */
>>> + .txfifo = SZ_1K, /* (128 * 64 bits) */
>>> + .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
>>> + .quirks = 0,
>>> + .little_endian = 1, /* little-endian */
>>
>> I'm not sure if this is really necessary, but for a boolean probably 'true'
>> would be
>> better than '1'.
> Ok
>
>>
>>> +};
>>> +
>>> +#define NXP_FSPI_MAX_CHIPSELECT 4
>>> +
>>> +struct nxp_fspi {
>>> + void __iomem *iobase;
>>> + void __iomem *ahb_addr;
>>> + u32 memmap_phy;
>>> + u32 memmap_phy_size;
>>> + struct clk *clk, *clk_en;
>>> + struct device *dev;
>>> + struct completion c;
>>> + const struct nxp_fspi_devtype_data *devtype_data;
>>> + struct mutex lock;
>>> + struct pm_qos_request pm_qos_req;
>>> + int selected;
>>> + void (*write)(u32 val, void __iomem *addr);
>>> + u32 (*read)(void __iomem *addr);
>>> +};
>>> +
>>> +static void fspi_writel_be(u32 val, void __iomem *addr) {
>>> + iowrite32be(val, addr);
>>> +}
>>> +
>>> +static void fspi_writel(u32 val, void __iomem *addr) {
>>> + iowrite32(val, addr);
>>> +}
>>> +
>>> +static u32 fspi_readl_be(void __iomem *addr) {
>>> + return ioread32be(addr);
>>> +}
>>> +
>>> +static u32 fspi_readl(void __iomem *addr) {
>>> + return ioread32(addr);
>>> +}
>>> +
>>> +static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id) {
>>> + struct nxp_fspi *f = dev_id;
>>> + u32 reg;
>>> +
>>> + /* clear interrupt */
>>> + reg = f->read(f->iobase + FSPI_INTR);
>>> + f->write(FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
>>> +
>>> + if (reg & FSPI_INTR_IPCMDDONE)
>>> + complete(&f->c);
>>> +
>>> + return IRQ_HANDLED;
>>> +}
>>> +
>>> +static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width) {
>>> + switch (width) {
>>> + case 1:
>>> + case 2:
>>> + case 4:
>>> + case 8:
>>> + return 0;
>>> + }
>>> +
>>> + return -ENOTSUPP;
>>> +}
>>> +
>>> +static bool nxp_fspi_supports_op(struct spi_mem *mem,
>>> + const struct spi_mem_op *op)
>>> +{
>>> + struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
>>> + int ret;
>>> +
>>> + ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
>>> +
>>> + if (op->addr.nbytes)
>>> + ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
>>> +
>>> + if (op->dummy.nbytes)
>>> + ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
>>> +
>>> + if (op->data.nbytes)
>>> + ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
>>> +
>>> + if (ret)
>>> + return false;
>>> +
>>> + /*
>>> + * The number of instructions needed for the op, needs
>>> + * to fit into a single LUT entry.
>>> + */
>>> + if (op->addr.nbytes +
>>> + (op->dummy.nbytes ? 1:0) +
>>> + (op->data.nbytes ? 1:0) > 6)
>>> + return false;
>>> +
>>> + /* Max 64 dummy clock cycles supported */
>>> + if (op->dummy.buswidth &&
>>> + (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
>>> + return false;
>>> +
>>> + /* Max data length, check controller limits and alignment */
>>> + if (op->data.dir == SPI_MEM_DATA_IN &&
>>> + (op->data.nbytes > f->devtype_data->ahb_buf_size ||
>>> + (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
>>> + !IS_ALIGNED(op->data.nbytes, 8))))
>>> + return false;
>>> +
>>> + if (op->data.dir == SPI_MEM_DATA_OUT &&
>>> + op->data.nbytes > f->devtype_data->txfifo)
>>> + return false;
>>> +
>>> + return true;
>>> +}
>>> +
>>> +/* Instead of busy looping invoke readl_poll_timeout functionality.
>>> +*/ static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
>>> u32
>> reg,
>>> + u32 mask, u32 delay_us, u32 timeout_us)
>>
>> You do not need to pass 'reg' here, you can just use a local variable.
>>
> Ok, let me verify by using local variable instead of passing status in reg
> variable.
>
>>> +{
>>> + u32 l_mask;
>>> +
>>> + if (f->devtype_data->little_endian)
>>> + l_mask = mask;
>>> + else
>>> + l_mask = (u32)cpu_to_be32(mask);
>>
>> You could shorten this a bit by just reusing 'mask' and drop 'l_mask'.
>> See my version of this function in v4 of the FSL QSPI driver.
> Ok, would check your implementation.
Please note, that the break condition in my v4 needs to be inverted.
It's currently wrong and I will fix it in the next version.
>
>>
>>> +
>>> + return readl_poll_timeout(base, reg, (reg & l_mask),
>>> + delay_us, timeout_us);
>>> +}
>>> +
>>> +/*
>>> + * If the slave device content being changed by Write/Erase, need to
>>> + * invalidate the AHB buffer. This can be achieved by doing the reset
>>> + * of controller after setting MCR0[SWRESET] bit.
>>> + */
>>> +static inline void nxp_fspi_invalid(struct nxp_fspi *f) {
>>> + u32 reg;
>>> + int ret;
>>> + u32 l_mask;
>>> +
>>> + reg = f->read(f->iobase + FSPI_MCR0);
>>> + f->write(reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
>>> +
>>> + if (f->devtype_data->little_endian)
>>> + l_mask = FSPI_MCR0_SWRST;
>>> + else
>>> + l_mask = (u32)cpu_to_be32(FSPI_MCR0_SWRST);
>>> +
>>> + /* w1c register, wait unit clear */
>>> + ret = readl_poll_timeout(f->iobase + FSPI_MCR0, reg,
>>> + !(reg & l_mask), 0, POLL_TOUT_US);
>>
>> It would be better to add a parameter to fspi_readl_poll_tout() for
>> inverting the
>> break condition and then reuse this function here.
>>
> Ok
>
>>> + WARN_ON(ret);
>>> +}
>>> +
>>> +static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
>>> + const struct spi_mem_op *op)
>>> +{
>>> + void __iomem *base = f->iobase;
>>> + u32 lutval[4] = {};
>>> + int lutidx = 1, i;
>>> +
>>> + /* cmd */
>>> + lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
>>> + op->cmd.opcode);
>>> +
>>> + /* addr bus width */
>>> + if (op->addr.nbytes) {
>>> + u32 addrlen = 0;
>>> +
>>> + if (op->addr.nbytes == 3)
>>> + addrlen = ADDR24BIT;
>>> + else if (op->addr.nbytes == 4)
>>> + addrlen = ADDR32BIT;
>>
>> I know we already had this discussion with Boris on v2, but if you keep only
>> supporting 3 and 4 byte adresses, then it should be documented somewhere to
>> let people know that this driver can't be used to interface SPI NAND and
>> other
>> flash chips that use deviant address widths.
>>
>> An even better solution would be to make this work somehow. I can't see why
>> the approach from the QSPI driver using LUT_MODE shouldn't work, but who
>> knows...
> Working of LUT_MODE in place of LUT_ADDR in QSPI when passing information of
> address might be an QuadSPI controller issue.
> I have tried using LUT_MODE for this controller and it didn't work.
> Discussed with HW IP owner of FlexSPI controller and they said we need to
> pass LUT_ADDR when programming for address length.
>
>>
>> It's a pity, that the designers of the new IP still did not really take SPI
>> NAND into
>> account.
>>
> This controller works for the NAND flash as well. In SW, for now my driver
> has been validated only for the NOR flash devices and thus I have added
> support for 3 and 4 bytes in code.
> Idea, was to modify the driver code when NAND device being verified using
> this driver.
> Meanwhile, I can add switch case for address bytes of length 1, 2, 3 and 4
> instead of just 3 and 4.
>
>>> +
>>> + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
>>> + LUT_PAD(op->addr.buswidth),
>>> + addrlen);
>>> + lutidx++;
>>> + }
>>> +
>>> + /* dummy bytes, if needed */
>>> + if (op->dummy.nbytes) {
>>> + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
>>> + /*
>>> + * Due to FlexSPI controller limitation number of PAD for
>> dummy
>>> + * buswidth needs to be programmed as equal to data buswidth.
>>> + */
>>> + LUT_PAD(op->data.buswidth),
>>
>> This seems like a hack for something that should be better handled by the spi
>> mem layer. I think you should have a check for data.buswidth ==
>> dummy.buswidth in nxp_fspi_supports_op() and if that fails the spi mem layer
>> must find a working fallback. But I'm not sure, so we probably need to ask
>> Boris.
>>
> This is an issue with the controller and would be published in the
> documentation in upcoming revision.
> In any of the 1-1-x mode, needs to be pass dummy information on single PAD
> but due to clock control issue, both controller and flash device start taking
> control of the data line and hence data gets corrupted.
> This has been identified and been suggested to use PAD information for dummy
> same as Data PAD for case of 1-1-x protocols.
> This would going to be updated in the next release document of the controller.
>
>>> + op->dummy.nbytes * 8 /
>>> + op->dummy.buswidth);
>>> + lutidx++;
>>> + }
>>> +
>>> + /* read/write data bytes */
>>> + if (op->data.nbytes) {
>>> + lutval[lutidx / 2] |= LUT_DEF(lutidx,
>>> + op->data.dir ==
>> SPI_MEM_DATA_IN ?
> Yes, data is coming from SPI memory i.e. read operation
> @SPI_MEM_DATA_IN: data coming from the SPI memory
There was no comment here from my side. The question mark is the ternary
operator here ;)
>
>>> + LUT_NXP_READ : LUT_NXP_WRITE,
>>> + LUT_PAD(op->data.buswidth),
>>> + 0);
>>> + lutidx++;
>>> + }
>>> +
>>> + /* stop condition. */
>>> + lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
>>> +
>>> + /* unlock LUT */
>>> + f->write(FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
>>> + f->write(FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
>>> +
>>> + /* fill LUT */
>>> + for (i = 0; i < ARRAY_SIZE(lutval); i++)
>>> + f->write(lutval[i], base + FSPI_LUT_REG(i));
>>> +
>>> + dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n",
>>> + op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]);
>>> +
>>> + /* lock LUT */
>>> + f->write(FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
>>> + f->write(FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR); }
>>> +
>>> +static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f) {
>>> + int ret;
>>> +
>>> + ret = clk_prepare_enable(f->clk_en);
>>> + if (ret)
>>> + return ret;
>>> +
>>> + ret = clk_prepare_enable(f->clk);
>>> + if (ret) {
>>> + clk_disable_unprepare(f->clk_en);
>>> + return ret;
>>> + }
>>> +
>>> + return 0;
>>> +}
>>> +
>>> +static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f) {
>>> + clk_disable_unprepare(f->clk);
>>> + clk_disable_unprepare(f->clk_en);
>>> +}
>>> +
>>> +/*
>>> + * In FlexSPI controller, flash access is based on value of
>>> +FSPI_FLSHXXCR0
>>> + * register and start base address of the slave device.
>>> + *
>>> + * (Higher address)
>>> + * -------- <-- FLSHB2CR0
>>> + * | B2 |
>>> + * | |
>>> + * B2 start address --> -------- <-- FLSHB1CR0
>>> + * | B1 |
>>> + * | |
>>> + * B1 start address --> -------- <-- FLSHA2CR0
>>> + * | A2 |
>>> + * | |
>>> + * A2 start address --> -------- <-- FLSHA1CR0
>>> + * | A1 |
>>> + * | |
>>> + * A1 start address --> -------- (Lower address)
>>> + *
>>> + *
>>> + * Start base address defines the starting address range for given CS
>>> +and
>>> + * FSPI_FLSHXXCR0 defines the size of the slave device connected at given
>>> CS.
>>> + *
>>> + * But, different targets are having different combinations of number
>>> +of CS,
>>> + * some targets only have single CS or two CS covering controller's
>>> +full
>>> + * memory mapped space area.
>>> + * Thus, implementation is being done as independent of the size and
>>> +number
>>> + * of the connected slave device.
>>> + * Assign controller memory mapped space size as the size to the
>>> +connected
>>> + * slave device.
>>> + * Mark FLSHxxCR0 as zero initially and then assign value only to the
>>> +selected
>>> + * chip-select Flash configuration register.
>>> + *
>>> + * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to
>>> +the
>>> + * memory mapped size of the controller.
>>> + * Value for rest of the CS FLSHxxCR0 register would be zero.
>>> + *
>>> + */
>>> +static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device
>>> +*spi) {
>>> + unsigned long rate = spi->max_speed_hz;
>>> + int ret;
>>> + uint64_t size_kb;
>>> +
>>> + /*
>>> + * Return, if previously selected slave device is same as current
>>> + * requested slave device.
>>> + */
>>> + if (f->selected == spi->chip_select)
>>> + return;
>>> +
>>> + /* Reset FLSHxxCR0 registers */
>>> + f->write(0, f->iobase + FSPI_FLSHA1CR0);
>>> + f->write(0, f->iobase + FSPI_FLSHA2CR0);
>>> + f->write(0, f->iobase + FSPI_FLSHB1CR0);
>>> + f->write(0, f->iobase + FSPI_FLSHB2CR0);
>>> +
>>> + /* Assign controller memory mapped space as size, KBytes, of flash. */
>>> + size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
>>> +
>>> + switch (spi->chip_select) {
>>> + case 0:
>>> + f->write(size_kb, f->iobase + FSPI_FLSHA1CR0);
>>> + break;
>>> + case 1:
>>> + f->write(size_kb, f->iobase + FSPI_FLSHA2CR0);
>>> + break;
>>> + case 2:
>>> + f->write(size_kb, f->iobase + FSPI_FLSHB1CR0);
>>> + break;
>>> + case 3:
>>> + f->write(size_kb, f->iobase + FSPI_FLSHB2CR0);
>>> + break;
>>> + default:
>>> + dev_err(f->dev, "In-correct CS provided\n");
>>> + return;
>>> + }
>>> +
>>> + dev_dbg(f->dev, "Slave device [CS:%x] selected\n",
>>> +spi->chip_select);
>>> +
>>> + nxp_fspi_clk_disable_unprep(f);
>>> +
>>> + ret = clk_set_rate(f->clk, rate);
>>> + if (ret)
>>> + return;
>>> +
>>> + ret = nxp_fspi_clk_prep_enable(f);
>>> + if (ret)
>>> + return;
>>> + f->selected = spi->chip_select;
>>> +}
>>> +
>>> +static void nxp_fspi_read_ahb(struct nxp_fspi *f, const struct
>>> +spi_mem_op *op) {
>>> + u32 len = op->data.nbytes;
>>> +
>>> + /* Read out the data directly from the AHB buffer. */
>>> + memcpy_fromio(op->data.buf.in, (f->ahb_addr + op->addr.val), len); }
>>> +
>>> +static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
>>> + const struct spi_mem_op *op)
>>> +{
>>> + void __iomem *base = f->iobase;
>>> + int i, j, ret;
>>> + int size, tmp_size, wm_size;
>>> + u32 data = 0, reg;
>>> + u32 *txbuf = (u32 *) op->data.buf.out;
>>> +
>>> + /* clear the TX FIFO. */
>>> + f->write(FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
>>> +
>>> + /* Default value of water mark level is 8 bytes. */
>>> + wm_size = 8;
>>> + size = op->data.nbytes / wm_size;
>>> + for (i = 0; i < size; i++) {
>>> + /* Wait for TXFIFO empty */
>>> + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, reg,
>>> + FSPI_INTR_IPTXWE, 0,
>> POLL_TOUT_US);
>>> + WARN_ON(ret);
>>> +
>>> + j = 0;
>>> + tmp_size = wm_size;
>>> + while (tmp_size > 0) {
>>> + data = 0;
>>> + memcpy(&data, txbuf, 4);
>>> + f->write(data, base + FSPI_TFDR + j * 4);
>>> + tmp_size -= 4;
>>> + j++;
>>> + txbuf += 1;
>>> + }
>>> + f->write(FSPI_INTR_IPTXWE, base + FSPI_INTR);
>>> + }
>>> +
>>> + size = op->data.nbytes % wm_size;
>>> + if (size) {
>>> + /* Wait for TXFIFO empty */
>>> + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, reg,
>>> + FSPI_INTR_IPTXWE, 0,
>> POLL_TOUT_US);
>>> + WARN_ON(ret);
>>> +
>>> + j = 0;
>>> + tmp_size = 0;
>>> + while (size > 0) {
>>> + data = 0;
>>> + tmp_size = (size < 4) ? size : 4;
>>> + memcpy(&data, txbuf, tmp_size);
>>> + f->write(data, base + FSPI_TFDR + j * 4);
>>> + size -= tmp_size;
>>> + j++;
>>> + txbuf += 1;
>>> + }
>>> + f->write(FSPI_INTR_IPTXWE, base + FSPI_INTR);
>>> + }
>>> +}
>>> +
>>> +static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
>>> + const struct spi_mem_op *op)
>>> +{
>>> + void __iomem *base = f->iobase;
>>> + int i, j;
>>> + int size, tmp_size, wm_size, ret;
>>> + u32 tmp = 0, reg;
>>> + u8 *buf = op->data.buf.in;
>>> + u32 len = op->data.nbytes;
>>> +
>>> + /* Default value of water mark level is 8 bytes. */
>>> + wm_size = 8;
>>> +
>>> + while (len > 0) {
>>> + size = len / wm_size;
>>> +
>>> + for (i = 0; i < size; i++) {
>>> + /* Wait for RXFIFO available */
>>> + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
>>> + reg, FSPI_INTR_IPRXWA,
>>> + 0, POLL_TOUT_US);
>>> + WARN_ON(ret);
>>> +
>>> + j = 0;
>>> + tmp_size = wm_size;
>>> + while (tmp_size > 0) {
>>> + tmp = 0;
>>> + tmp = f->read(base + FSPI_RFDR + j * 4);
>>> + memcpy(buf, &tmp, 4);
>>> + tmp_size -= 4;
>>> + j++;
>>> + buf += 4;
>>> + }
>>> + /* move the FIFO pointer */
>>> + f->write(FSPI_INTR_IPRXWA, base + FSPI_INTR);
>>> + len -= wm_size;
>>> + }
>>> +
>>> + size = len % wm_size;
>>> +
>>> + j = 0;
>>> + if (size) {
>>> + /* Wait for RXFIFO available */
>>> + ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
>>> + reg, FSPI_INTR_IPRXWA,
>>> + 0, POLL_TOUT_US);
>>> + WARN_ON(ret);
>>> +
>>> + while (len > 0) {
>>> + tmp = 0;
>>> + size = (len < 4) ? len : 4;
>>> + tmp = f->read(base + FSPI_RFDR + j * 4);
>>> + memcpy(buf, &tmp, size);
>>> + len -= size;
>>> + j++;
>>> + buf += size;
>>> + }
>>> + }
>>> +
>>> + /* invalid the RXFIFO */
>>> + f->write(FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
>>> + /* move the FIFO pointer */
>>> + f->write(FSPI_INTR_IPRXWA, base + FSPI_INTR);
>>> + }
>>> +}
>>> +
>>> +static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op
>>> +*op) {
>>> + void __iomem *base = f->iobase;
>>> + int seqnum = 0;
>>> + int err = 0;
>>> + u32 reg;
>>> +
>>> + reg = f->read(base + FSPI_IPRXFCR);
>>> + /* invalid RXFIFO first */
>>> + reg &= ~FSPI_IPRXFCR_DMA_EN;
>>> + reg = reg | FSPI_IPRXFCR_CLR;
>>> + f->write(reg, base + FSPI_IPRXFCR);
>>> +
>>> + init_completion(&f->c);
>>> +
>>> + f->write(op->addr.val, base + FSPI_IPCR0);
>>> + /*
>>> + * Always start the sequence at the same index since we update
>>> + * the LUT at each exec_op() call. And also specify the DATA
>>> + * length, since it's has not been specified in the LUT.
>>> + */
>>> + f->write(op->data.nbytes |
>>> + (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
>>> + (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
>>> + base + FSPI_IPCR1);
>>> +
>>> + /* Trigger the LUT now. */
>>> + f->write(FSPI_IPCMD_TRG, base + FSPI_IPCMD);
>>> +
>>> + /* Wait for the interrupt. */
>>> + if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
>>> + err = -ETIMEDOUT;
>>> +
>>> + /* Invoke IP data read, if request is of data read. */
>>> + if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
>>> + nxp_fspi_read_rxfifo(f, op);
>>> +
>>> + return err;
>>> +}
>>> +
>>> +static int nxp_fspi_exec_op(struct spi_mem *mem, const struct
>>> +spi_mem_op *op) {
>>> + struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
>>> + void __iomem *base = f->iobase;
>>> + int err = 0;
>>> + u32 status;
>>> +
>>> + mutex_lock(&f->lock);
>>> +
>>> + /* Wait for controller being ready. */
>>> + status = f->read(base + FSPI_STS0);
>>> + err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0, status,
>>> + FSPI_STS0_ARB_IDLE, 1, POLL_TOUT_US);
>>> + WARN_ON(err);
>>> +
>>> + nxp_fspi_select_mem(f, mem->spi);
>>> +
>>> + nxp_fspi_prepare_lut(f, op);
>>> + /*
>>> + * If we have large chunks of data, we read them through the AHB bus
>>> + * by accessing the mapped memory. In all other cases we use
>>> + * IP commands to access the flash.
>>> + */
>>> + if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
>>> + op->data.dir == SPI_MEM_DATA_IN) {
>>> + nxp_fspi_read_ahb(f, op);
>>> + } else {
>>> + if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
>>> + nxp_fspi_fill_txfifo(f, op);
>>> +
>>> + err = nxp_fspi_do_op(f, op);
>>> +
>>> + /* Invalidate the data in the AHB buffer. */
>>> + if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
>>> + nxp_fspi_invalid(f);
>>> + }
>>> +
>>> + mutex_unlock(&f->lock);
>>> +
>>> + return err;
>>> +}
>>> +
>>> +static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct
>>> +spi_mem_op *op) {
>>> + struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
>>> +
>>> + if (op->data.dir == SPI_MEM_DATA_OUT) {
>>> + if (op->data.nbytes > f->devtype_data->txfifo)
>>> + op->data.nbytes = f->devtype_data->txfifo;
>>> + } else {
>>> + if (op->data.nbytes > f->devtype_data->ahb_buf_size)
>>> + op->data.nbytes = f->devtype_data->ahb_buf_size;
>>> + else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
>>> + op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
>>> + }
>>> +
>>> + return 0;
>>> +}
>>> +
>>> +static int nxp_fspi_default_setup(struct nxp_fspi *f) {
>>> + void __iomem *base = f->iobase;
>>> + int ret, i;
>>> + u32 reg, l_mask;
>>> +
>>> + /* disable and unprepare clock to avoid glitch pass to controller */
>>> + nxp_fspi_clk_disable_unprep(f);
>>> +
>>> + /* the default frequency, we will change it later if necessary. */
>>> + ret = clk_set_rate(f->clk, 20000000);
>>> + if (ret)
>>> + return ret;
>>> +
>>> + ret = nxp_fspi_clk_prep_enable(f);
>>> + if (ret)
>>> + return ret;
>>> +
>>> + /* Reset the module */
>>> + f->write(FSPI_MCR0_SWRST, base + FSPI_MCR0);
>>> +
>>> + if (f->devtype_data->little_endian)
>>> + l_mask = FSPI_MCR0_SWRST;
>>> + else
>>> + l_mask = (u32)cpu_to_be32(FSPI_MCR0_SWRST);
>>> +
>>> + /* w1c register, wait unit clear */
>>> + ret = readl_poll_timeout(f->iobase + FSPI_MCR0, reg,
>>> + !(reg & l_mask), 0, POLL_TOUT_US);
>>
>> See above. Reuse fspi_readl_poll_tout() here.
>>
> Ok
>
>> Regards,
>> Frieder
>>
>>> + WARN_ON(ret);
>>> +
>>> + /* Disable the module */
>>> + f->write(FSPI_MCR0_MDIS, base + FSPI_MCR0);
>>> +
>>> + /* Reset the DLL register to default value */
>>> + f->write(FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
>>> + f->write(FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
>>> +
>>> + /* enable module */
>>> + f->write(FSPI_MCR0_AHB_TIMEOUT(0xFF) |
>> FSPI_MCR0_IP_TIMEOUT(0xFF),
>>> + base + FSPI_MCR0);
>>> +
>>> + /*
>>> + * Disable same device enable bit and configure all slave devices
>>> + * independently.
>>> + */
>>> + reg = f->read(f->iobase + FSPI_MCR2);
>>> + reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
>>> + f->write(reg, base + FSPI_MCR2);
>>> +
>>> + /* AHB configuration for access buffer 0~7. */
>>> + for (i = 0; i < 7; i++)
>>> + f->write(0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
>>> +
>>> + /*
>>> + * Set ADATSZ with the maximum AHB buffer size to improve the read
>>> + * performance.
>>> + */
>>> + f->write((f->devtype_data->ahb_buf_size / 8 |
>>> + FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
>>> +
>>> + /* prefetch and no start address alignment limitation */
>>> + f->write(FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
>>> + base + FSPI_AHBCR);
>>> +
>>> + /* AHB Read - Set lut sequence ID for all CS. */
>>> + f->write(SEQID_LUT, base + FSPI_FLSHA1CR2);
>>> + f->write(SEQID_LUT, base + FSPI_FLSHA2CR2);
>>> + f->write(SEQID_LUT, base + FSPI_FLSHB1CR2);
>>> + f->write(SEQID_LUT, base + FSPI_FLSHB2CR2);
>>> +
>>> + f->selected = -1;
>>> +
>>> + /* enable the interrupt */
>>> + f->write(FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
>>> +
>>> + return 0;
>>> +}
>>> +
>>> +static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
>>> + .adjust_op_size = nxp_fspi_adjust_op_size,
>>> + .supports_op = nxp_fspi_supports_op,
>>> + .exec_op = nxp_fspi_exec_op,
>>> +};
>>> +
>>> +static int nxp_fspi_probe(struct platform_device *pdev) {
>>> + struct spi_controller *ctlr;
>>> + struct device *dev = &pdev->dev;
>>> + struct device_node *np = dev->of_node;
>>> + struct resource *res;
>>> + struct nxp_fspi *f;
>>> + int ret;
>>> +
>>> + ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
>>> + if (!ctlr)
>>> + return -ENOMEM;
>>> +
>>> + ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD |
>>> + SPI_TX_DUAL | SPI_TX_QUAD;
>>> +
>>> + f = spi_controller_get_devdata(ctlr);
>>> + f->dev = dev;
>>> + f->devtype_data = of_device_get_match_data(dev);
>>> + if (!f->devtype_data) {
>>> + ret = -ENODEV;
>>> + goto err_put_ctrl;
>>> + }
>>> +
>>> + platform_set_drvdata(pdev, f);
>>> +
>>> + /* find the resources - configuration register address space */
>>> + res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
>> "fspi_base");
>>> + f->iobase = devm_ioremap_resource(dev, res);
>>> + if (IS_ERR(f->iobase)) {
>>> + ret = PTR_ERR(f->iobase);
>>> + goto err_put_ctrl;
>>> + }
>>> +
>>> + /* find the resources - controller memory mapped space */
>>> + res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
>> "fspi_mmap");
>>> + f->ahb_addr = devm_ioremap_resource(dev, res);
>>> + if (IS_ERR(f->ahb_addr)) {
>>> + ret = PTR_ERR(f->ahb_addr);
>>> + goto err_put_ctrl;
>>> + }
>>> +
>>> + /* assign memory mapped starting address and mapped size. */
>>> + f->memmap_phy = res->start;
>>> + f->memmap_phy_size = resource_size(res);
>>> +
>>> + /* find the clocks */
>>> + f->clk_en = devm_clk_get(dev, "fspi_en");
>>> + if (IS_ERR(f->clk_en)) {
>>> + ret = PTR_ERR(f->clk_en);
>>> + goto err_put_ctrl;
>>> + }
>>> +
>>> + f->clk = devm_clk_get(dev, "fspi");
>>> + if (IS_ERR(f->clk)) {
>>> + ret = PTR_ERR(f->clk);
>>> + goto err_put_ctrl;
>>> + }
>>> +
>>> + /*
>>> + * R/W functions for big- or little-endian registers:
>>> + * The FSPI controller's endianness is independent of
>>> + * the CPU core's endianness. So far, although the CPU
>>> + * core is little-endian the FSPI controller can use
>>> + * big-endian or little-endian.
>>> + */
>>> + if (f->devtype_data->little_endian) {
>>> + f->write = fspi_writel;
>>> + f->read = fspi_readl;
>>> + } else {
>>> + f->write = fspi_writel_be;
>>> + f->read = fspi_readl_be;
>>> + }
>>> +
>>> + ret = nxp_fspi_clk_prep_enable(f);
>>> + if (ret) {
>>> + dev_err(dev, "can not enable the clock\n");
>>> + goto err_put_ctrl;
>>> + }
>>> +
>>> + /* find the irq */
>>> + ret = platform_get_irq(pdev, 0);
>>> + if (ret < 0) {
>>> + dev_err(dev, "failed to get the irq: %d\n", ret);
>>> + goto err_disable_clk;
>>> + }
>>> +
>>> + ret = devm_request_irq(dev, ret,
>>> + nxp_fspi_irq_handler, 0, pdev->name, f);
>>> + if (ret) {
>>> + dev_err(dev, "failed to request irq: %d\n", ret);
>>> + goto err_disable_clk;
>>> + }
>>> +
>>> + mutex_init(&f->lock);
>>> +
>>> + ctlr->bus_num = -1;
>>> + ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
>>> + ctlr->mem_ops = &nxp_fspi_mem_ops;
>>> +
>>> + nxp_fspi_default_setup(f);
>>> +
>>> + ctlr->dev.of_node = np;
>>> +
>>> + ret = spi_register_controller(ctlr);
>>> + if (ret)
>>> + goto err_destroy_mutex;
>>> +
>>> + return 0;
>>> +
>>> +err_destroy_mutex:
>>> + mutex_destroy(&f->lock);
>>> +
>>> +err_disable_clk:
>>> + nxp_fspi_clk_disable_unprep(f);
>>> +
>>> +err_put_ctrl:
>>> + spi_controller_put(ctlr);
>>> +
>>> + dev_err(dev, "NXP FSPI probe failed\n");
>>> + return ret;
>>> +}
>>> +
>>> +static int nxp_fspi_remove(struct platform_device *pdev) {
>>> + struct nxp_fspi *f = platform_get_drvdata(pdev);
>>> +
>>> + /* disable the hardware */
>>> + f->write(FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
>>> +
>>> + nxp_fspi_clk_disable_unprep(f);
>>> +
>>> + mutex_destroy(&f->lock);
>>> +
>>> + return 0;
>>> +}
>>> +
>>> +static int nxp_fspi_suspend(struct device *dev) {
>>> + return 0;
>>> +}
>>> +
>>> +static int nxp_fspi_resume(struct device *dev) {
>>> + struct nxp_fspi *f = dev_get_drvdata(dev);
>>> +
>>> + nxp_fspi_default_setup(f);
>>> +
>>> + return 0;
>>> +}
>>> +
>>> +static const struct of_device_id nxp_fspi_dt_ids[] = {
>>> + { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
>>> + { /* sentinel */ }
>>> +};
>>> +MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
>>> +
>>> +static const struct dev_pm_ops nxp_fspi_pm_ops = {
>>> + .suspend = nxp_fspi_suspend,
>>> + .resume = nxp_fspi_resume,
>>> +};
>>> +
>>> +static struct platform_driver nxp_fspi_driver = {
>>> + .driver = {
>>> + .name = "nxp-fspi",
>>> + .of_match_table = nxp_fspi_dt_ids,
>>> + .pm = &nxp_fspi_pm_ops,
>>> + },
>>> + .probe = nxp_fspi_probe,
>>> + .remove = nxp_fspi_remove,
>>> +};
>>> +module_platform_driver(nxp_fspi_driver);
>>> +
>>> +MODULE_DESCRIPTION("NXP FSPI Controller Driver");
>> MODULE_AUTHOR("NXP
>>> +Semiconductor"); MODULE_LICENSE("GPL v2");
>>>