gf2121 commented on pull request #2139:
URL: https://github.com/apache/lucene-solr/pull/2139#issuecomment-744637612


   > This is great. I'm curious if you tested other numbers of bits per value 
than 15?
   
   The `decode15` benchmark result here only wants to tell that we can cause an 
SIMD optimizization in this way. However, as talked in #2113 , microbenchmarks 
may not be trustable from time to time. Here is the result of all these bits:
   ```
   Benchmark              Mode  Cnt          Score         Error  Units
   MyBenchmark.decode6a  thrpt   10  247414556.380 ± 2434585.070  ops/s
   MyBenchmark.decode6b  thrpt   10  222221023.558 ± 1030956.992  ops/s
   
   MyBenchmark.decode7a  thrpt   10  197406024.801 ± 4874584.420  ops/s
   MyBenchmark.decode7b  thrpt   10  147646576.688 ± 3572102.825  ops/s
   
   MyBenchmark.decode12a  thrpt   10  131609297.779 ±  712263.151  ops/s
   MyBenchmark.decode12b  thrpt   10  110071926.176 ± 1302030.745  ops/s
   
   MyBenchmark.decode14a  thrpt   10   64464919.397 ± 1884249.466  ops/s
   MyBenchmark.decode14b  thrpt   10  116994814.109 ±  467860.907  ops/s
   
   MyBenchmark.decode15a  thrpt   10   65234108.600 ± 1336311.970  ops/s
   MyBenchmark.decode15b  thrpt   10  106840656.363 ±  448026.092  ops/s
   
   MyBenchmark.decode24a  thrpt   10  55316236.195 ± 2305321.938  ops/s
   MyBenchmark.decode24b  thrpt   10  70260091.330 ± 1545397.554  ops/s
   ```
   Accroding to this result, methods will get a bit slower when bits per value 
<= 12. but when i removed their optimization, the end-to-end benchmark result 
become slower...
   
   ```
                 HighPhrase      174.64      (3.9%)      173.31      (4.3%)   
-0.8% (  -8% -    7%) 0.556
                    Respell      196.80      (3.5%)      195.51      (3.6%)   
-0.7% (  -7% -    6%) 0.562
            LowSloppyPhrase      424.47      (4.2%)      422.49      (3.7%)   
-0.5% (  -8% -    7%) 0.711
                     Fuzzy2       68.12     (16.9%)       67.84     (17.7%)   
-0.4% ( -29% -   41%) 0.939
                     Fuzzy1      129.37      (7.1%)      129.02      (6.1%)   
-0.3% ( -12% -   13%) 0.900
      BrowseMonthSSDVFacets      138.95      (2.0%)      138.85      (2.0%)   
-0.1% (  -4% -    4%) 0.905
            MedSloppyPhrase      360.37      (4.2%)      360.20      (4.4%)   
-0.0% (  -8% -    8%) 0.973
       HighIntervalsOrdered      122.33      (2.1%)      122.32      (1.9%)   
-0.0% (  -3% -    4%) 0.992
                 OrHighHigh       66.73      (4.6%)       66.76      (4.0%)    
0.0% (  -8% -    9%) 0.978
               HighSpanNear      105.13      (2.7%)      105.28      (2.4%)    
0.1% (  -4% -    5%) 0.865
   BrowseDayOfYearSSDVFacets      122.74      (2.6%)      122.99      (1.3%)    
0.2% (  -3% -    4%) 0.747
                    Prefix3      334.95      (6.3%)      335.70      (4.2%)    
0.2% (  -9% -   11%) 0.894
                LowSpanNear      561.05      (3.8%)      562.69      (4.7%)    
0.3% (  -7% -    9%) 0.830
      BrowseMonthTaxoFacets       36.31      (6.9%)       36.43      (6.2%)    
0.3% ( -12% -   14%) 0.876
                   Wildcard      147.10      (3.3%)      147.68      (3.0%)    
0.4% (  -5% -    6%) 0.693
       BrowseDateTaxoFacets       32.84      (5.7%)       32.99      (5.7%)    
0.4% ( -10% -   12%) 0.810
           HighSloppyPhrase       44.53      (6.5%)       44.72      (5.7%)    
0.4% ( -11% -   13%) 0.821
                  LowPhrase      297.21      (3.6%)      298.53      (2.9%)    
0.4% (  -5% -    7%) 0.668
                  OrHighLow      796.60      (7.5%)      800.20      (6.9%)    
0.5% ( -12% -   15%) 0.842
                    LowTerm     2376.34      (6.6%)     2387.16      (4.5%)    
0.5% ( -10% -   12%) 0.800
                   PKLookup      227.92      (3.1%)      229.30      (1.8%)    
0.6% (  -4% -    5%) 0.447
   BrowseDayOfYearTaxoFacets       32.93      (6.1%)       33.13      (5.6%)    
0.6% ( -10% -   13%) 0.737
                     IntNRQ      584.74      (7.6%)      589.54      (7.9%)    
0.8% ( -13% -   17%) 0.738
                 AndHighMed      805.31      (5.7%)      812.48      (4.3%)    
0.9% (  -8% -   11%) 0.577
                AndHighHigh      382.16      (4.4%)      386.58      (3.5%)    
1.2% (  -6% -    9%) 0.359
                  OrHighMed      404.42      (5.1%)      409.44      (4.6%)    
1.2% (  -8% -   11%) 0.418
                    MedTerm     2139.91      (6.0%)     2167.39      (5.0%)    
1.3% (  -9% -   13%) 0.461
                MedSpanNear      273.38      (3.0%)      276.90      (3.1%)    
1.3% (  -4% -    7%) 0.186
      HighTermDayOfYearSort      310.36     (16.4%)      314.78     (15.6%)    
1.4% ( -26% -   40%) 0.779
          HighTermMonthSort      854.54     (13.1%)      869.18     (11.5%)    
1.7% ( -20% -   30%) 0.660
                 AndHighLow     1592.57      (7.8%)     1620.67      (5.6%)    
1.8% ( -10% -   16%) 0.411
                   HighTerm     1464.88      (5.7%)     1491.23      (4.4%)    
1.8% (  -7% -   12%) 0.263
                  MedPhrase      627.29      (4.3%)      639.12      (3.9%)    
1.9% (  -6% -   10%) 0.149
   ```
   So I chose to pay more attention to the end-to-end result, and reserved all 
optimizations for them:)


----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org



---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@lucene.apache.org
For additional commands, e-mail: issues-h...@lucene.apache.org

Reply via email to