Fokko commented on code in PR #6714:
URL: https://github.com/apache/iceberg/pull/6714#discussion_r1110430198


##########
python/pyiceberg/expressions/visitors.py:
##########
@@ -986,3 +989,245 @@ def expression_to_plain_format(
     # In the form of expr1 ∨ expr2 ∨ ... ∨ exprN
     visitor = ExpressionToPlainFormat(cast_int_to_datetime)
     return [visit(expression, visitor) for expression in expressions]
+
+
+class _InclusiveMetricsEvaluator(BoundBooleanExpressionVisitor[bool]):
+    struct: StructType
+    expr: BooleanExpression
+
+    value_counts: Dict[int, int]
+    null_counts: Dict[int, int]
+    nan_counts: Dict[int, int]
+    lower_bounds: Dict[int, bytes]
+    upper_bounds: Dict[int, bytes]
+
+    def __init__(self, schema: Schema, expr: BooleanExpression, 
case_sensitive: bool = True) -> None:
+        self.struct = schema.as_struct()
+        self.expr = bind(schema, rewrite_not(expr), case_sensitive)
+
+    def eval(self, file: DataFile) -> bool:
+        """Test whether the file may contain records that match the 
expression."""
+
+        if file.record_count == 0:
+            return ROWS_CANNOT_MATCH
+
+        if file.record_count < 0:
+            # @TODO we haven't implemented parsing record count from avro file 
and thus set record count -1
+            # when importing avro tables to iceberg tables. This should be 
updated once we implemented
+            # and set correct record count.
+            return ROWS_MIGHT_MATCH
+
+        self.value_counts = file.value_counts or EMPTY_DICT
+        self.null_counts = file.null_value_counts or EMPTY_DICT
+        self.nan_counts = file.nan_value_counts or EMPTY_DICT
+        self.lower_bounds = file.lower_bounds or EMPTY_DICT
+        self.upper_bounds = file.upper_bounds or EMPTY_DICT
+
+        return visit(self.expr, self)
+
+    def _contains_nulls_only(self, idx: int) -> bool:
+        return idx in self.value_counts and idx in self.null_counts and 
self.value_counts[idx] - self.null_counts[idx] == 0
+
+    def _contains_nans_only(self, idx: int) -> bool:
+        return idx in self.nan_counts and idx in self.value_counts and 
self.nan_counts[idx] == self.value_counts[idx]
+
+    def _is_nan(self, val: Any) -> bool:
+        return math.isnan(val)

Review Comment:
   Good question. It throws an error:
   ```
   >>> math.isnan(None)
   Traceback (most recent call last):
     File "<stdin>", line 1, in <module>
   TypeError: must be real number, not NoneType
   >>> math.isnan("vo")
   Traceback (most recent call last):
     File "<stdin>", line 1, in <module>
   TypeError: must be real number, not str
   ```
   I think this should be fine because a non-float/double field can never be 
NaN. If you do `IsNan` expression on a string field, it will just skip the file.



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org
For additional commands, e-mail: issues-h...@iceberg.apache.org

Reply via email to