rdblue commented on code in PR #6437: URL: https://github.com/apache/iceberg/pull/6437#discussion_r1050288238
########## python/pyiceberg/io/pyarrow.py: ########## @@ -437,3 +457,103 @@ def visit_or(self, left_result: pc.Expression, right_result: pc.Expression) -> p def expression_to_pyarrow(expr: BooleanExpression) -> pc.Expression: return boolean_expression_visit(expr, _ConvertToArrowExpression()) + + +class _ConstructFinalSchema(SchemaVisitor[pa.ChunkedArray]): + file_schema: Schema + table: pa.Table + + def __init__(self, file_schema: Schema, table: pa.Table): + self.file_schema = file_schema + self.table = table + + def schema(self, schema: Schema, struct_result: List[pa.ChunkedArray]) -> pa.Table: + return pa.table(struct_result, schema=schema_to_pyarrow(schema)) + + def struct(self, _: StructType, field_results: List[pa.ChunkedArray]) -> List[pa.ChunkedArray]: + return field_results + + def field(self, field: NestedField, _: pa.ChunkedArray) -> pa.ChunkedArray: + column_name = self.file_schema.find_column_name(field.field_id) + + if column_name: + column_idx = self.table.schema.get_field_index(column_name) + else: + column_idx = -1 + + expected_arrow_type = schema_to_pyarrow(field.field_type) + + # The idx will be -1 when the column can't be found + if column_idx >= 0: + column_field: pa.Field = self.table.schema[column_idx] + column_arrow_type: pa.DataType = column_field.type + column_data: pa.ChunkedArray = self.table[column_idx] + + # In case of schema evolution + if column_arrow_type != expected_arrow_type: + column_data = column_data.cast(expected_arrow_type) + else: + import numpy as np + + column_data = pa.array(np.full(shape=len(self.table), fill_value=None), type=expected_arrow_type) + return column_data + + def list(self, _: ListType, element_result: pa.ChunkedArray) -> pa.ChunkedArray: + pass + + def map(self, _: MapType, key_result: pa.ChunkedArray, value_result: pa.ChunkedArray) -> pa.DataType: + pass + + def primitive(self, primitive: PrimitiveType) -> pa.ChunkedArray: + pass + + +def to_final_schema(final_schema: Schema, schema: Schema, table: pa.Table) -> pa.Table: + return visit(final_schema, _ConstructFinalSchema(schema, table)) + + +def project_table( + files: Iterable["FileScanTask"], table: "Table", row_filter: BooleanExpression, projected_schema: Schema, case_sensitive: bool +) -> pa.Table: + if isinstance(table.io, PyArrowFileIO): + scheme, path = PyArrowFileIO.parse_location(table.location()) + fs = table.io.get_fs(scheme) + else: + raise ValueError(f"Expected PyArrowFileIO, got: {table.io}") + + projected_field_ids = projected_schema.field_ids + + tables = [] + for task in files: + _, path = PyArrowFileIO.parse_location(task.file.file_path) + + # Get the schema + with fs.open_input_file(path) as fout: + parquet_schema = pq.read_schema(fout) + schema_raw = parquet_schema.metadata.get(ICEBERG_SCHEMA) + file_schema = Schema.parse_raw(schema_raw) + + file_project_schema = prune_columns(file_schema, projected_field_ids) Review Comment: This is going to produce a subset of the requested schema. If the file has columns a and b, but the requested schema has a, b, and c, then this is going to only have the ones from the file and will produce a dataset with a missing column. That's okay if Arrow knows how to handle it below in `concat_tables`, I think. We just need to be careful that we are producing an Arrow table that matches the requested schema, not just the file schemas. -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org For additional commands, e-mail: issues-h...@iceberg.apache.org