mattmartin14 commented on code in PR #1534:
URL: https://github.com/apache/iceberg-python/pull/1534#discussion_r1944800924


##########
pyiceberg/table/__init__.py:
##########
@@ -1064,6 +1067,78 @@ def name_mapping(self) -> Optional[NameMapping]:
         """Return the table's field-id NameMapping."""
         return self.metadata.name_mapping()
 
+    @dataclass(frozen=True)
+    class UpsertResult:
+        """Summary the upsert operation"""
+        rows_updated: int = 0
+        rows_inserted: int = 0
+        info_msgs: Optional[str] = None
+        error_msgs: Optional[str] = None
+
+    def upsert(self, df: pa.Table, join_cols: list
+                   , when_matched_update_all: bool = True
+                   , when_not_matched_insert_all: bool = True
+                ) -> UpsertResult:
+        """
+        Shorthand API for performing an upsert to an iceberg table.
+        
+        Args:
+            df: The input dataframe to upsert with the table's data.
+            join_cols: The columns to join on.
+            when_matched_update_all: Bool indicating to update rows that are 
matched but require an update due to a value in a non-key column changing
+            when_not_matched_insert_all: Bool indicating new rows to be 
inserted that do not match any existing rows in the table
+
+        Returns: a UpsertResult class
+        """
+
+        from pyiceberg.table import upsert_util
+
+        if when_matched_update_all == False and when_not_matched_insert_all == 
False:
+            return {'rows_updated': 0, 'rows_inserted': 0, 'info_msgs': 'no 
upsert options selected...exiting'}
+            #return UpsertResult(info_msgs='no upsert options 
selected...exiting')
+
+        if upsert_util.dups_check_in_source(df, join_cols):
+
+            return {'error_msgs': 'Duplicate rows found in source dataset 
based on the key columns. No upsert executed'}
+
+        #get list of rows that exist so we don't have to load the entire 
target table
+        pred = upsert_util.get_filter_list(df, join_cols)
+        iceberg_table_trimmed = self.scan(row_filter=pred).to_arrow()
+
+        update_row_cnt = 0
+        insert_row_cnt = 0
+
+        try:
+
+            with self.transaction() as txn:
+            
+                if when_matched_update_all:
+
+                    update_recs = upsert_util.get_rows_to_update(df, 
iceberg_table_trimmed, join_cols)
+
+                    update_row_cnt = len(update_recs)
+
+                    overwrite_filter = 
upsert_util.get_filter_list(update_recs, join_cols)
+
+                    txn.overwrite(update_recs, 
overwrite_filter=overwrite_filter)    

Review Comment:
   sure; so once a match filter is figured out, we still need to actually 
evaluate if the matched row has any values changed; otherwise, it makes no 
sense to overwrite a row with the exact same data; this saves on I/O and 
overall compute 😀.
   
   I've updated the code with comments and changed the name of the var to 
overwrite_mask_predicate



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@iceberg.apache.org
For additional commands, e-mail: issues-h...@iceberg.apache.org

Reply via email to