Package: python-scipy
Version: 0.10.1+dfsg1-3
Severity: serious
Justification: fails to build from source (but built successfully in the past)

Please see attached a somewhat minimalistic code to reproduce the
problem.

it fails only on s390x -- fine on s390 and any other architecture/port where
pymvpa2 was just built.

Traceback (most recent call last):
  File "scipy-fx-failure2.py", line 65, in <module>
    1.47441522,  1.78073152,  2.08704783,  2.39336413,  2.69968044]))
  File "scipy-fx-failure2.py", line 52, in least_sq_fit
    return leastsq(efx, params)
  File "/usr/lib/python2.7/dist-packages/scipy/optimize/minpack.py", line 324, 
in leastsq
    raise errors[info][1](errors[info][0])
TypeError: Improper input parameters.


-- System Information:
Debian Release: wheezy/sid
  APT prefers testing
  APT policy: (900, 'testing'), (600, 'unstable'), (300, 'experimental'), (100, 
'stable')
Architecture: amd64 (x86_64)

Kernel: Linux 3.2.0-2-amd64 (SMP w/2 CPU cores)
Locale: LANG=en_US, LC_CTYPE=en_US.UTF-8 (charmap=UTF-8)
Shell: /bin/sh linked to /bin/bash

Versions of packages python-scipy depends on:
ii  libamd2.2.0                        1:3.4.0-2
ii  libatlas3-base [liblapack.so.3gf]  3.8.4-7
ii  libatlas3gf-base                   3.8.4-7
ii  libblas3 [libblas3gf]              1.2.20110419-5
ii  libblas3gf                         1.2.20110419-5
ii  libc6                              2.13-33
ii  libgcc1                            1:4.7.1-2
ii  libgfortran3                       4.7.1-2
ii  liblapack3 [liblapack3gf]          3.4.1-4
ii  liblapack3gf                       3.4.1-4
ii  libquadmath0                       4.7.1-2
ii  libstdc++6                         4.7.1-2
ii  libumfpack5.4.0                    1:3.4.0-2
ii  python                             2.7.3~rc2-1
ii  python-numpy [python-numpy-abi9]   1:1.6.2-1
ii  python2.6                          2.6.8-0.2
ii  python2.7                          2.7.3~rc2-2.1

Versions of packages python-scipy recommends:
ii  g++ [c++-compiler]      4:4.7.1-1
ii  g++-4.4 [c++-compiler]  4.4.7-1
iu  g++-4.6 [c++-compiler]  4.6.3-8
ii  g++-4.7 [c++-compiler]  4.7.1-2
ii  python-dev              2.7.3~rc2-1
ii  python-imaging          1.1.7-4

Versions of packages python-scipy suggests:
ii  python [python-profiler]  2.7.3~rc2-1

-- no debconf information
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
#   See COPYING file distributed along with the PyMVPA package for the
#   copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Misc. functions (in the mathematical sense)"""

__docformat__ = 'restructuredtext'

import numpy as np
from numpy import array
from scipy.optimize import leastsq


def dual_gaussian(x, amp1=1.0, mean1=0.0, std1=1.0,
                     amp2=1.0, mean2=0.0, std2=1.0):
    from scipy.stats import norm
    print x
    if std1 <= 0 or std2 <= 0:
        return np.nan
    return (amp1 * norm.pdf(x, mean1, std1)) + (amp2 * norm.pdf(x, mean2, std2))



def least_sq_fit(fx, params, y, x=None, **kwargs):
    y = np.asanyarray(y)

    if len(y.shape) > 1:
        nsamp, ylen = y.shape
    else:
        nsamp, ylen = (1, len(y))

    # contruct matching x-values if necessary
    if x is None:
        x = np.arange(ylen)

    # transform x and y into 1d arrays
    if nsamp > 1:
        x = np.array([x] * nsamp).ravel()
        y = y.ravel()

    # define error function
    def efx(p):
        print "EFX: ", p
        err = y - fx(x, *p, **kwargs)
        return err

    # do fit
    return leastsq(efx, params)


if __name__ == '__main__':
    print least_sq_fit(dual_gaussian, 
	    (1000, 0.5, 0.1, 1000, 0.8, 0.05), 
            array([[ 1,  0,  0,  0,  5,  2,  6,  9,  6, 12, 14,  9, 12,  7,  7,  5,  2,
         2,  0,  1],
       [ 1,  0,  0,  0,  5,  2,  6,  9,  6, 12, 14,  9, 12,  7,  7,  5,  2,
         2,  0,  1]]), 
           array([-3.12032937, -2.81401307, -2.50769676, -2.20138046, -1.89506415,
       -1.58874784, -1.28243154, -0.97611523, -0.66979893, -0.36348262,
       -0.05716631,  0.24914999,  0.5554663 ,  0.8617826 ,  1.16809891,
        1.47441522,  1.78073152,  2.08704783,  2.39336413,  2.69968044]))

Reply via email to