Package: boot Version: 1.2.23-1 Severity: serious boot fails to build:
> * checking examples ... ERROR > Running examples in boot-Ex.R failed. > The error most likely occurred in: > > > ### * censboot > > > > flush(stderr()); flush(stdout()) > > > > ### Name: censboot > > ### Title: Bootstrap for Censored Data > > ### Aliases: censboot cens.return > > ### Keywords: survival > > > > ### ** Examples > > > > data(aml, package="boot") > > library(survival) > Loading required package: splines > > Attaching package: 'survival' > > > The following object(s) are masked _by_ .GlobalEnv : > > aml > > > The following object(s) are masked from package:boot : > > aml > > > # Example 3.9 of Davison and Hinkley (1997) does a bootstrap on some > > # remission times for patients with a type of leukaemia. The patients > > # were divided into those who received maintenance chemotherapy and > > # those who did not. Here we are interested in the median remission > > # time for the two groups. > > aml.fun <- function(data) { > + surv <- survfit(Surv(time, cens)~group, data=data) > + out <- NULL > + st <- 1 > + for (s in 1:length(surv$strata)) { > + inds <- st:(st+surv$strata[s]-1) > + md <- min(surv$time[inds[1-surv$surv[inds]>=0.5]]) > + st <- st+surv$strata[s] > + out <- c(out,md) > + } > + out > + } > > aml.case <- censboot(aml,aml.fun,R=499,strata=aml$group) > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > > > > # Now we will look at the same statistic using the conditional > > # bootstrap and the weird bootstrap. For the conditional bootstrap > > # the survival distribution is stratified but the censoring > > # distribution is not. > > > > aml.s1 <- survfit(Surv(time,cens)~group, data=aml) > > aml.s2 <- survfit(Surv(time-0.001*cens,1-cens)~1, data=aml) > > aml.cond <- censboot(aml,aml.fun,R=499,strata=aml$group, > + F.surv=aml.s1,G.surv=aml.s2,sim="cond") > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > > > > # For the weird bootstrap we must redefine our function slightly since > > # the data will not contain the group number. > > aml.fun1 <- function(data,str) { > + surv <- survfit(Surv(data[,1],data[,2])~str) > + out <- NULL > + st <- 1 > + for (s in 1:length(surv$strata)) { > + inds <- st:(st+surv$strata[s]-1) > + md <- min(surv$time[inds[1-surv$surv[inds]>=0.5]]) > + st <- st+surv$strata[s] > + out <- c(out,md) > + } > + } > > aml.wei <- censboot(cbind(aml$time,aml$cens),aml.fun1,R=499, > + strata=aml$group, F.surv=aml.s1,sim="weird") > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > Warning: no finite arguments to min; returning Inf > > > > # Now for an example where a cox regression model has been fitted > > # the data we will look at the melanoma data of Example 7.6 from > > # Davison and Hinkley (1997). The fitted model assumes that there > > # is a different survival distribution for the ulcerated and > > # non-ulcerated groups but that the thickness of the tumour has a > > # common effect. We will also assume that the censoring distribution > > # is different in different age groups. The statistic of interest > > # is the linear predictor. This is returned as the values at a > > # number of equally spaced points in the range of interest. > > data(melanoma, package="boot") > > library(splines)# for ns > > mel.cox <- coxph(Surv(time,status==1)~ns(thickness,df=4)+strata(ulcer), > + data=melanoma) > > mel.surv <- survfit(mel.cox) > > agec <- cut(melanoma$age,c(0,39,49,59,69,100)) > > mel.cens <- survfit(Surv(time-0.001*(status==1),status!=1)~ > + strata(agec),data=melanoma) > > mel.fun <- function(d) { > + t1 <- ns(d$thickness,df=4) > + cox <- coxph(Surv(d$time,d$status==1) ~ t1+strata(d$ulcer)) > + eta <- unique(cox$linear.predictors) > + u <- unique(d$thickness) > + sp <- smooth.spline(u,eta,df=20) > + th <- seq(from=0.25,to=10,by=0.25) > + predict(sp,th)$y > + } > > mel.str<-cbind(melanoma$ulcer,agec) > > # this is slow! > > mel.mod <- censboot(melanoma,mel.fun,R=999,F.surv=mel.surv, > + G.surv=mel.cens,cox=mel.cox,strata=mel.str,sim="model") > Error in xy.coords(x, y) : 'x' and 'y' lengths differ > Execution halted -- Matt
signature.asc
Description: Digital signature