On 30 September 2005 at 13:34, Matt Kraai wrote: | Package: boot | Version: 1.2.23-1 | Severity: serious | | boot fails to build: | | > * checking examples ... ERROR | > Running examples in boot-Ex.R failed. | > The error most likely occurred in:
Which platform is that, Matt? I disabled a few of these tests on other packages formerly provided by r-recommended, and I guess I need to disable it here too. Dirk | > | > > ### * censboot | > > | > > flush(stderr()); flush(stdout()) | > > | > > ### Name: censboot | > > ### Title: Bootstrap for Censored Data | > > ### Aliases: censboot cens.return | > > ### Keywords: survival | > > | > > ### ** Examples | > > | > > data(aml, package="boot") | > > library(survival) | > Loading required package: splines | > | > Attaching package: 'survival' | > | > | > The following object(s) are masked _by_ .GlobalEnv : | > | > aml | > | > | > The following object(s) are masked from package:boot : | > | > aml | > | > > # Example 3.9 of Davison and Hinkley (1997) does a bootstrap on some | > > # remission times for patients with a type of leukaemia. The patients | > > # were divided into those who received maintenance chemotherapy and | > > # those who did not. Here we are interested in the median remission | > > # time for the two groups. | > > aml.fun <- function(data) { | > + surv <- survfit(Surv(time, cens)~group, data=data) | > + out <- NULL | > + st <- 1 | > + for (s in 1:length(surv$strata)) { | > + inds <- st:(st+surv$strata[s]-1) | > + md <- min(surv$time[inds[1-surv$surv[inds]>=0.5]]) | > + st <- st+surv$strata[s] | > + out <- c(out,md) | > + } | > + out | > + } | > > aml.case <- censboot(aml,aml.fun,R=499,strata=aml$group) | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > > | > > # Now we will look at the same statistic using the conditional | > > # bootstrap and the weird bootstrap. For the conditional bootstrap | > > # the survival distribution is stratified but the censoring | > > # distribution is not. | > > | > > aml.s1 <- survfit(Surv(time,cens)~group, data=aml) | > > aml.s2 <- survfit(Surv(time-0.001*cens,1-cens)~1, data=aml) | > > aml.cond <- censboot(aml,aml.fun,R=499,strata=aml$group, | > + F.surv=aml.s1,G.surv=aml.s2,sim="cond") | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > > | > > # For the weird bootstrap we must redefine our function slightly since | > > # the data will not contain the group number. | > > aml.fun1 <- function(data,str) { | > + surv <- survfit(Surv(data[,1],data[,2])~str) | > + out <- NULL | > + st <- 1 | > + for (s in 1:length(surv$strata)) { | > + inds <- st:(st+surv$strata[s]-1) | > + md <- min(surv$time[inds[1-surv$surv[inds]>=0.5]]) | > + st <- st+surv$strata[s] | > + out <- c(out,md) | > + } | > + } | > > aml.wei <- censboot(cbind(aml$time,aml$cens),aml.fun1,R=499, | > + strata=aml$group, F.surv=aml.s1,sim="weird") | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > Warning: no finite arguments to min; returning Inf | > > | > > # Now for an example where a cox regression model has been fitted | > > # the data we will look at the melanoma data of Example 7.6 from | > > # Davison and Hinkley (1997). The fitted model assumes that there | > > # is a different survival distribution for the ulcerated and | > > # non-ulcerated groups but that the thickness of the tumour has a | > > # common effect. We will also assume that the censoring distribution | > > # is different in different age groups. The statistic of interest | > > # is the linear predictor. This is returned as the values at a | > > # number of equally spaced points in the range of interest. | > > data(melanoma, package="boot") | > > library(splines)# for ns | > > mel.cox <- coxph(Surv(time,status==1)~ns(thickness,df=4)+strata(ulcer), | > + data=melanoma) | > > mel.surv <- survfit(mel.cox) | > > agec <- cut(melanoma$age,c(0,39,49,59,69,100)) | > > mel.cens <- survfit(Surv(time-0.001*(status==1),status!=1)~ | > + strata(agec),data=melanoma) | > > mel.fun <- function(d) { | > + t1 <- ns(d$thickness,df=4) | > + cox <- coxph(Surv(d$time,d$status==1) ~ t1+strata(d$ulcer)) | > + eta <- unique(cox$linear.predictors) | > + u <- unique(d$thickness) | > + sp <- smooth.spline(u,eta,df=20) | > + th <- seq(from=0.25,to=10,by=0.25) | > + predict(sp,th)$y | > + } | > > mel.str<-cbind(melanoma$ulcer,agec) | > > # this is slow! | > > mel.mod <- censboot(melanoma,mel.fun,R=999,F.surv=mel.surv, | > + G.surv=mel.cens,cox=mel.cox,strata=mel.str,sim="model") | > Error in xy.coords(x, y) : 'x' and 'y' lengths differ | > Execution halted | | -- | Matt -- Statistics: The (futile) attempt to offer certainty about uncertainty. -- Roger Koenker, 'Dictionary of Received Ideas of Statistics' -- To UNSUBSCRIBE, email to [EMAIL PROTECTED] with a subject of "unsubscribe". Trouble? Contact [EMAIL PROTECTED]