Repository: commons-math
Updated Branches:
  refs/heads/MATH_3_X 74c643b89 -> 9f51a3b8c


Javadoc fixes.


Project: http://git-wip-us.apache.org/repos/asf/commons-math/repo
Commit: http://git-wip-us.apache.org/repos/asf/commons-math/commit/9f51a3b8
Tree: http://git-wip-us.apache.org/repos/asf/commons-math/tree/9f51a3b8
Diff: http://git-wip-us.apache.org/repos/asf/commons-math/diff/9f51a3b8

Branch: refs/heads/MATH_3_X
Commit: 9f51a3b8cd7a2193db1c8b4c0fdaea63ab01cb12
Parents: 74c643b
Author: Phil Steitz <phil.ste...@gmail.com>
Authored: Mon Dec 28 07:40:55 2015 -0700
Committer: Phil Steitz <phil.ste...@gmail.com>
Committed: Mon Dec 28 07:40:55 2015 -0700

----------------------------------------------------------------------
 .../interpolation/LoessInterpolator.java        |  30 +++---
 .../interpolation/SplineInterpolator.java       |  12 +--
 .../TricubicInterpolatingFunction.java          |  10 +-
 .../TricubicSplineInterpolatingFunction.java    |  10 +-
 .../TricubicSplineInterpolator.java             |   2 +-
 .../polynomials/PolynomialFunction.java         |  18 ++--
 .../polynomials/PolynomialSplineFunction.java   |  12 +--
 .../analysis/polynomials/PolynomialsUtils.java  | 100 +++++++++----------
 8 files changed, 96 insertions(+), 98 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/commons-math/blob/9f51a3b8/src/main/java/org/apache/commons/math3/analysis/interpolation/LoessInterpolator.java
----------------------------------------------------------------------
diff --git 
a/src/main/java/org/apache/commons/math3/analysis/interpolation/LoessInterpolator.java
 
b/src/main/java/org/apache/commons/math3/analysis/interpolation/LoessInterpolator.java
index 7f0788d..1c24edc 100644
--- 
a/src/main/java/org/apache/commons/math3/analysis/interpolation/LoessInterpolator.java
+++ 
b/src/main/java/org/apache/commons/math3/analysis/interpolation/LoessInterpolator.java
@@ -20,28 +20,28 @@ import java.io.Serializable;
 import java.util.Arrays;
 
 import org.apache.commons.math3.analysis.polynomials.PolynomialSplineFunction;
-import org.apache.commons.math3.exception.NotPositiveException;
-import org.apache.commons.math3.exception.OutOfRangeException;
 import org.apache.commons.math3.exception.DimensionMismatchException;
 import org.apache.commons.math3.exception.NoDataException;
-import org.apache.commons.math3.exception.NumberIsTooSmallException;
 import org.apache.commons.math3.exception.NonMonotonicSequenceException;
 import org.apache.commons.math3.exception.NotFiniteNumberException;
+import org.apache.commons.math3.exception.NotPositiveException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.exception.OutOfRangeException;
 import org.apache.commons.math3.exception.util.LocalizedFormats;
 import org.apache.commons.math3.util.FastMath;
-import org.apache.commons.math3.util.MathUtils;
 import org.apache.commons.math3.util.MathArrays;
+import org.apache.commons.math3.util.MathUtils;
 
 /**
  * Implements the <a href="http://en.wikipedia.org/wiki/Local_regression";>
  * Local Regression Algorithm</a> (also Loess, Lowess) for interpolation of
  * real univariate functions.
- * <p/>
+ * <p>
  * For reference, see
- * <a href="http://www.math.tau.ac.il/~yekutiel/MA seminar/Cleveland 1979.pdf">
+ * <a 
href="http://www.stat.washington.edu/courses/stat527/s13/readings/Cleveland_JASA_1979.pdf";>
  * William S. Cleveland - Robust Locally Weighted Regression and Smoothing
  * Scatterplots</a>
- * <p/>
+ * </p>
  * This class implements both the loess method and serves as an interpolation
  * adapter to it, allowing one to build a spline on the obtained loess fit.
  *
@@ -65,16 +65,16 @@ public class LoessInterpolator
      * a particular point, this fraction of source points closest
      * to the current point is taken into account for computing
      * a least-squares regression.
-     * <p/>
-     * A sensible value is usually 0.25 to 0.5.
+     * <p>
+     * A sensible value is usually 0.25 to 0.5.</p>
      */
     private final double bandwidth;
     /**
      * The number of robustness iterations parameter: this many
      * robustness iterations are done.
-     * <p/>
+     * <p>
      * A sensible value is usually 0 (just the initial fit without any
-     * robustness iterations) to 4.
+     * robustness iterations) to 4.</p>
      */
     private final int robustnessIters;
     /**
@@ -109,10 +109,10 @@ public class LoessInterpolator
      * @param bandwidth  when computing the loess fit at
      * a particular point, this fraction of source points closest
      * to the current point is taken into account for computing
-     * a least-squares regression.</br>
+     * a least-squares regression.
      * A sensible value is usually 0.25 to 0.5, the default value is
      * {@link #DEFAULT_BANDWIDTH}.
-     * @param robustnessIters This many robustness iterations are done.</br>
+     * @param robustnessIters This many robustness iterations are done.
      * A sensible value is usually 0 (just the initial fit without any
      * robustness iterations) to 4, the default value is
      * {@link #DEFAULT_ROBUSTNESS_ITERS}.
@@ -130,10 +130,10 @@ public class LoessInterpolator
      * @param bandwidth  when computing the loess fit at
      * a particular point, this fraction of source points closest
      * to the current point is taken into account for computing
-     * a least-squares regression.</br>
+     * a least-squares regression.
      * A sensible value is usually 0.25 to 0.5, the default value is
      * {@link #DEFAULT_BANDWIDTH}.
-     * @param robustnessIters This many robustness iterations are done.</br>
+     * @param robustnessIters This many robustness iterations are done.
      * A sensible value is usually 0 (just the initial fit without any
      * robustness iterations) to 4, the default value is
      * {@link #DEFAULT_ROBUSTNESS_ITERS}.

http://git-wip-us.apache.org/repos/asf/commons-math/blob/9f51a3b8/src/main/java/org/apache/commons/math3/analysis/interpolation/SplineInterpolator.java
----------------------------------------------------------------------
diff --git 
a/src/main/java/org/apache/commons/math3/analysis/interpolation/SplineInterpolator.java
 
b/src/main/java/org/apache/commons/math3/analysis/interpolation/SplineInterpolator.java
index a9ca862..f37e1b1 100644
--- 
a/src/main/java/org/apache/commons/math3/analysis/interpolation/SplineInterpolator.java
+++ 
b/src/main/java/org/apache/commons/math3/analysis/interpolation/SplineInterpolator.java
@@ -16,12 +16,12 @@
  */
 package org.apache.commons.math3.analysis.interpolation;
 
-import org.apache.commons.math3.exception.DimensionMismatchException;
-import org.apache.commons.math3.exception.util.LocalizedFormats;
-import org.apache.commons.math3.exception.NumberIsTooSmallException;
-import org.apache.commons.math3.exception.NonMonotonicSequenceException;
 import org.apache.commons.math3.analysis.polynomials.PolynomialFunction;
 import org.apache.commons.math3.analysis.polynomials.PolynomialSplineFunction;
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.NonMonotonicSequenceException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
 import org.apache.commons.math3.util.MathArrays;
 
 /**
@@ -29,7 +29,7 @@ import org.apache.commons.math3.util.MathArrays;
  * <p>
  * The {@link #interpolate(double[], double[])} method returns a {@link 
PolynomialSplineFunction}
  * consisting of n cubic polynomials, defined over the subintervals determined 
by the x values,
- * x[0] < x[i] ... < x[n].  The x values are referred to as "knot points."</p>
+ * {@code x[0] < x[i] ... < x[n].}  The x values are referred to as "knot 
points."
  * <p>
  * The value of the PolynomialSplineFunction at a point x that is greater than 
or equal to the smallest
  * knot point and strictly less than the largest knot point is computed by 
finding the subinterval to which
@@ -42,7 +42,7 @@ import org.apache.commons.math3.util.MathArrays;
  *  corresponding y value.</li>
  * <li>Adjacent polynomials are equal through two derivatives at the knot 
points (i.e., adjacent polynomials
  *  "match up" at the knot points, as do their first and second 
derivatives).</li>
- * </ol></p>
+ * </ol>
  * <p>
  * The cubic spline interpolation algorithm implemented is as described in 
R.L. Burden, J.D. Faires,
  * <u>Numerical Analysis</u>, 4th Ed., 1989, PWS-Kent, ISBN 0-53491-585-X, pp 
126-131.

http://git-wip-us.apache.org/repos/asf/commons-math/blob/9f51a3b8/src/main/java/org/apache/commons/math3/analysis/interpolation/TricubicInterpolatingFunction.java
----------------------------------------------------------------------
diff --git 
a/src/main/java/org/apache/commons/math3/analysis/interpolation/TricubicInterpolatingFunction.java
 
b/src/main/java/org/apache/commons/math3/analysis/interpolation/TricubicInterpolatingFunction.java
index 11b66d6..27e9a65 100644
--- 
a/src/main/java/org/apache/commons/math3/analysis/interpolation/TricubicInterpolatingFunction.java
+++ 
b/src/main/java/org/apache/commons/math3/analysis/interpolation/TricubicInterpolatingFunction.java
@@ -19,8 +19,8 @@ package org.apache.commons.math3.analysis.interpolation;
 import org.apache.commons.math3.analysis.TrivariateFunction;
 import org.apache.commons.math3.exception.DimensionMismatchException;
 import org.apache.commons.math3.exception.NoDataException;
-import org.apache.commons.math3.exception.OutOfRangeException;
 import org.apache.commons.math3.exception.NonMonotonicSequenceException;
+import org.apache.commons.math3.exception.OutOfRangeException;
 import org.apache.commons.math3.util.MathArrays;
 
 /**
@@ -28,9 +28,9 @@ import org.apache.commons.math3.util.MathArrays;
  * <a href="http://en.wikipedia.org/wiki/Tricubic_interpolation";>
  * tricubic spline interpolation</a>, as proposed in
  * <blockquote>
- *  Tricubic interpolation in three dimensions<br>
- *  F. Lekien and J. Marsden<br>
- *  <em>Int. J. Numer. Meth. Eng</em> 2005; <b>63</b>:455-471<br>
+ *  Tricubic interpolation in three dimensions,
+ *  F. Lekien and J. Marsden,
+ *  <em>Int. J. Numer. Meth. Eng</em> 2005; <b>63</b>:455-471
  * </blockquote>
  *
  * @since 3.4.
@@ -114,7 +114,7 @@ public class TricubicInterpolatingFunction
     private final double[] yval;
     /** Samples z-coordinates */
     private final double[] zval;
-    /** Set of cubic splines pacthing the whole data grid */
+    /** Set of cubic splines patching the whole data grid */
     private final TricubicFunction[][][] splines;
 
     /**

http://git-wip-us.apache.org/repos/asf/commons-math/blob/9f51a3b8/src/main/java/org/apache/commons/math3/analysis/interpolation/TricubicSplineInterpolatingFunction.java
----------------------------------------------------------------------
diff --git 
a/src/main/java/org/apache/commons/math3/analysis/interpolation/TricubicSplineInterpolatingFunction.java
 
b/src/main/java/org/apache/commons/math3/analysis/interpolation/TricubicSplineInterpolatingFunction.java
index 755d771..96aebd3 100644
--- 
a/src/main/java/org/apache/commons/math3/analysis/interpolation/TricubicSplineInterpolatingFunction.java
+++ 
b/src/main/java/org/apache/commons/math3/analysis/interpolation/TricubicSplineInterpolatingFunction.java
@@ -19,19 +19,19 @@ package org.apache.commons.math3.analysis.interpolation;
 import org.apache.commons.math3.analysis.TrivariateFunction;
 import org.apache.commons.math3.exception.DimensionMismatchException;
 import org.apache.commons.math3.exception.NoDataException;
-import org.apache.commons.math3.exception.OutOfRangeException;
 import org.apache.commons.math3.exception.NonMonotonicSequenceException;
+import org.apache.commons.math3.exception.OutOfRangeException;
 import org.apache.commons.math3.util.MathArrays;
 
 /**
  * Function that implements the
  * <a href="http://en.wikipedia.org/wiki/Tricubic_interpolation";>
  * tricubic spline interpolation</a>, as proposed in
- * <quote>
- *  Tricubic interpolation in three dimensions<br/>
- *  F. Lekien and J. Marsden<br/>
+ * <blockquote>
+ *  Tricubic interpolation in three dimensions,
+ *  F. Lekien and J. Marsden,
  *  <em>Int. J. Numer. Meth. Engng</em> 2005; <b>63</b>:455-471
- * </quote>
+ * </blockquote>
  *
  * @since 2.2
  * @deprecated To be removed in 4.0 (see MATH-1166).

http://git-wip-us.apache.org/repos/asf/commons-math/blob/9f51a3b8/src/main/java/org/apache/commons/math3/analysis/interpolation/TricubicSplineInterpolator.java
----------------------------------------------------------------------
diff --git 
a/src/main/java/org/apache/commons/math3/analysis/interpolation/TricubicSplineInterpolator.java
 
b/src/main/java/org/apache/commons/math3/analysis/interpolation/TricubicSplineInterpolator.java
index da19986..7f43e6f 100644
--- 
a/src/main/java/org/apache/commons/math3/analysis/interpolation/TricubicSplineInterpolator.java
+++ 
b/src/main/java/org/apache/commons/math3/analysis/interpolation/TricubicSplineInterpolator.java
@@ -177,7 +177,7 @@ public class TricubicSplineInterpolator
 
     /**
      * Compute the next index of an array, clipping if necessary.
-     * It is assumed (but not checked) that {@code i} is larger than or equal 
to 0}.
+     * It is assumed (but not checked) that {@code i} is larger than or equal 
to 0.
      *
      * @param i Index
      * @param max Upper limit of the array

http://git-wip-us.apache.org/repos/asf/commons-math/blob/9f51a3b8/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialFunction.java
----------------------------------------------------------------------
diff --git 
a/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialFunction.java
 
b/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialFunction.java
index d424a88..69be04a 100644
--- 
a/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialFunction.java
+++ 
b/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialFunction.java
@@ -19,14 +19,14 @@ package org.apache.commons.math3.analysis.polynomials;
 import java.io.Serializable;
 import java.util.Arrays;
 
-import org.apache.commons.math3.exception.util.LocalizedFormats;
-import org.apache.commons.math3.exception.NoDataException;
-import org.apache.commons.math3.exception.NullArgumentException;
 import org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
-import org.apache.commons.math3.analysis.UnivariateFunction;
 import org.apache.commons.math3.analysis.ParametricUnivariateFunction;
+import org.apache.commons.math3.analysis.UnivariateFunction;
 import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
 import 
org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
+import org.apache.commons.math3.exception.NoDataException;
+import org.apache.commons.math3.exception.NullArgumentException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
 import org.apache.commons.math3.util.FastMath;
 import org.apache.commons.math3.util.MathUtils;
 
@@ -81,8 +81,8 @@ public class PolynomialFunction implements 
UnivariateDifferentiableFunction, Dif
     /**
      * Compute the value of the function for the given argument.
      * <p>
-     *  The value returned is <br/>
-     *  <code>coefficients[n] * x^n + ... + coefficients[1] * x  + 
coefficients[0]</code>
+     *  The value returned is </p><p>
+     *  {@code coefficients[n] * x^n + ... + coefficients[1] * x  + 
coefficients[0]}
      * </p>
      *
      * @param x Argument for which the function value should be computed.
@@ -188,7 +188,7 @@ public class PolynomialFunction implements 
UnivariateDifferentiableFunction, Dif
      * Subtract a polynomial from the instance.
      *
      * @param p Polynomial to subtract.
-     * @return a new polynomial which is the difference the instance minus 
{@code p}.
+     * @return a new polynomial which is the instance minus {@code p}.
      */
     public PolynomialFunction subtract(final PolynomialFunction p) {
         // identify the lowest degree polynomial
@@ -215,7 +215,7 @@ public class PolynomialFunction implements 
UnivariateDifferentiableFunction, Dif
     /**
      * Negate the instance.
      *
-     * @return a new polynomial.
+     * @return a new polynomial with all coefficients negated
      */
     public PolynomialFunction negate() {
         double[] newCoefficients = new double[coefficients.length];
@@ -229,7 +229,7 @@ public class PolynomialFunction implements 
UnivariateDifferentiableFunction, Dif
      * Multiply the instance by a polynomial.
      *
      * @param p Polynomial to multiply by.
-     * @return a new polynomial.
+     * @return a new polynomial equal to this times {@code p}
      */
     public PolynomialFunction multiply(final PolynomialFunction p) {
         double[] newCoefficients = new double[coefficients.length + 
p.coefficients.length - 1];

http://git-wip-us.apache.org/repos/asf/commons-math/blob/9f51a3b8/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialSplineFunction.java
----------------------------------------------------------------------
diff --git 
a/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialSplineFunction.java
 
b/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialSplineFunction.java
index 7b402e5..ed5a4f9 100644
--- 
a/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialSplineFunction.java
+++ 
b/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialSplineFunction.java
@@ -18,17 +18,17 @@ package org.apache.commons.math3.analysis.polynomials;
 
 import java.util.Arrays;
 
-import org.apache.commons.math3.util.MathArrays;
 import org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
 import org.apache.commons.math3.analysis.UnivariateFunction;
 import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
 import 
org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
-import org.apache.commons.math3.exception.NonMonotonicSequenceException;
-import org.apache.commons.math3.exception.OutOfRangeException;
-import org.apache.commons.math3.exception.NumberIsTooSmallException;
 import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.NonMonotonicSequenceException;
 import org.apache.commons.math3.exception.NullArgumentException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.exception.OutOfRangeException;
 import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.util.MathArrays;
 
 /**
  * Represents a polynomial spline function.
@@ -59,8 +59,8 @@ import 
org.apache.commons.math3.exception.util.LocalizedFormats;
  * than the largest one, an <code>IllegalArgumentException</code>
  * is thrown.</li>
  * <li> Let <code>j</code> be the index of the largest knot point that is less
- * than or equal to <code>x</code>.  The value returned is <br>
- * <code>polynomials[j](x - knot[j])</code></li></ol></p>
+ * than or equal to <code>x</code>.  The value returned is
+ * {@code polynomials[j](x - knot[j])}</li></ol>
  *
  */
 public class PolynomialSplineFunction implements 
UnivariateDifferentiableFunction, DifferentiableUnivariateFunction {

http://git-wip-us.apache.org/repos/asf/commons-math/blob/9f51a3b8/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialsUtils.java
----------------------------------------------------------------------
diff --git 
a/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialsUtils.java
 
b/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialsUtils.java
index 2efa07d..d606433 100644
--- 
a/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialsUtils.java
+++ 
b/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialsUtils.java
@@ -90,14 +90,15 @@ public class PolynomialsUtils {
 
     /**
      * Create a Chebyshev polynomial of the first kind.
-     * <p><a 
href="http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html";>Chebyshev
+     * <p><a 
href="https://en.wikipedia.org/wiki/Chebyshev_polynomials";>Chebyshev
      * polynomials of the first kind</a> are orthogonal polynomials.
-     * They can be defined by the following recurrence relations:
-     * <pre>
-     *  T<sub>0</sub>(X)   = 1
-     *  T<sub>1</sub>(X)   = X
-     *  T<sub>k+1</sub>(X) = 2X T<sub>k</sub>(X) - T<sub>k-1</sub>(X)
-     * </pre></p>
+     * They can be defined by the following recurrence relations:</p><p>
+     * \(
+     *    T_0(x) = 1 \\
+     *    T_1(x) = x \\
+     *    T_{k+1}(x) = 2x T_k(x) - T_{k-1}(x)
+     * \)
+     * </p>
      * @param degree degree of the polynomial
      * @return Chebyshev polynomial of specified degree
      */
@@ -118,12 +119,13 @@ public class PolynomialsUtils {
      * Create a Hermite polynomial.
      * <p><a href="http://mathworld.wolfram.com/HermitePolynomial.html";>Hermite
      * polynomials</a> are orthogonal polynomials.
-     * They can be defined by the following recurrence relations:
-     * <pre>
-     *  H<sub>0</sub>(X)   = 1
-     *  H<sub>1</sub>(X)   = 2X
-     *  H<sub>k+1</sub>(X) = 2X H<sub>k</sub>(X) - 2k H<sub>k-1</sub>(X)
-     * </pre></p>
+     * They can be defined by the following recurrence relations:</p><p>
+     * \(
+     *  H_0(x) = 1 \\
+     *  H_1(x) = 2x \\
+     *  H_{k+1}(x) = 2x H_k(X) - 2k H_{k-1}(x)
+     * \)
+     * </p>
 
      * @param degree degree of the polynomial
      * @return Hermite polynomial of specified degree
@@ -146,12 +148,13 @@ public class PolynomialsUtils {
      * Create a Laguerre polynomial.
      * <p><a 
href="http://mathworld.wolfram.com/LaguerrePolynomial.html";>Laguerre
      * polynomials</a> are orthogonal polynomials.
-     * They can be defined by the following recurrence relations:
-     * <pre>
-     *        L<sub>0</sub>(X)   = 1
-     *        L<sub>1</sub>(X)   = 1 - X
-     *  (k+1) L<sub>k+1</sub>(X) = (2k + 1 - X) L<sub>k</sub>(X) - k 
L<sub>k-1</sub>(X)
-     * </pre></p>
+     * They can be defined by the following recurrence relations:</p><p>
+     * \(
+     *   L_0(x) = 1 \\
+     *   L_1(x) = 1 - x \\
+     *   (k+1) L_{k+1}(x) = (2k + 1 - x) L_k(x) - k L_{k-1}(x)
+     * \)
+     * </p>
      * @param degree degree of the polynomial
      * @return Laguerre polynomial of specified degree
      */
@@ -174,12 +177,13 @@ public class PolynomialsUtils {
      * Create a Legendre polynomial.
      * <p><a 
href="http://mathworld.wolfram.com/LegendrePolynomial.html";>Legendre
      * polynomials</a> are orthogonal polynomials.
-     * They can be defined by the following recurrence relations:
-     * <pre>
-     *        P<sub>0</sub>(X)   = 1
-     *        P<sub>1</sub>(X)   = X
-     *  (k+1) P<sub>k+1</sub>(X) = (2k+1) X P<sub>k</sub>(X) - k 
P<sub>k-1</sub>(X)
-     * </pre></p>
+     * They can be defined by the following recurrence relations:</p><p>
+     * \(
+     *   P_0(x) = 1 \\
+     *   P_1(x) = x \\
+     *   (k+1) P_{k+1}(x) = (2k+1) x P_k(x) - k P_{k-1}(x)
+     * \)
+     * </p>
      * @param degree degree of the polynomial
      * @return Legendre polynomial of specified degree
      */
@@ -202,14 +206,15 @@ public class PolynomialsUtils {
      * Create a Jacobi polynomial.
      * <p><a href="http://mathworld.wolfram.com/JacobiPolynomial.html";>Jacobi
      * polynomials</a> are orthogonal polynomials.
-     * They can be defined by the following recurrence relations:
-     * <pre>
-     *        P<sub>0</sub><sup>vw</sup>(X)   = 1
-     *        P<sub>-1</sub><sup>vw</sup>(X)  = 0
-     *  2k(k + v + w)(2k + v + w - 2) P<sub>k</sub><sup>vw</sup>(X) =
-     *  (2k + v + w - 1)[(2k + v + w)(2k + v + w - 2) X + v<sup>2</sup> - 
w<sup>2</sup>] P<sub>k-1</sub><sup>vw</sup>(X)
-     *  - 2(k + v - 1)(k + w - 1)(2k + v + w) P<sub>k-2</sub><sup>vw</sup>(X)
-     * </pre></p>
+     * They can be defined by the following recurrence relations:</p><p>
+     * \(
+     *    P_0^{vw}(x) = 1 \\
+     *    P_{-1}^{vw}(x) = 0 \\
+     *    2k(k + v + w)(2k + v + w - 2) P_k^{vw}(x) = \\
+     *    (2k + v + w - 1)[(2k + v + w)(2k + v + w - 2) x + v^2 - w^2] 
P_{k-1}^{vw}(x) \\
+     *  - 2(k + v - 1)(k + w - 1)(2k + v + w) P_{k-2}^{vw}(x)
+     * \)
+     * </p>
      * @param degree degree of the polynomial
      * @param v first exponent
      * @param w second exponent
@@ -301,27 +306,20 @@ public class PolynomialsUtils {
     }
 
     /**
-     * Compute the coefficients of the polynomial <code>P<sub>s</sub>(x)</code>
+     * Compute the coefficients of the polynomial \(P_s(x)\)
      * whose values at point {@code x} will be the same as the those from the
-     * original polynomial <code>P(x)</code> when computed at {@code x + 
shift}.
-     * Thus, if <code>P(x) = &Sigma;<sub>i</sub> a<sub>i</sub> 
x<sup>i</sup></code>,
-     * then
-     * <pre>
-     *  <table>
-     *   <tr>
-     *    <td><code>P<sub>s</sub>(x)</td>
-     *    <td>= &Sigma;<sub>i</sub> b<sub>i</sub> x<sup>i</sup></code></td>
-     *   </tr>
-     *   <tr>
-     *    <td></td>
-     *    <td>= &Sigma;<sub>i</sub> a<sub>i</sub> (x + 
shift)<sup>i</sup></code></td>
-     *   </tr>
-     *  </table>
-     * </pre>
+     * original polynomial \(P(x)\) when computed at {@code x + shift}.
+     * <p>
+     * More precisely, let \(\Delta = \) {@code shift} and let
+     * \(P_s(x) = P(x + \Delta)\).  The returned array
+     * consists of the coefficients of \(P_s\).  So if \(a_0, ..., a_{n-1}\)
+     * are the coefficients of \(P\), then the returned array
+     * \(b_0, ..., b_{n-1}\) satisfies the identity
+     * \(\sum_{i=0}^{n-1} b_i x^i = \sum_{i=0}^{n-1} a_i (x + \Delta)^i\) for 
all \(x\).
      *
      * @param coefficients Coefficients of the original polynomial.
      * @param shift Shift value.
-     * @return the coefficients <code>b<sub>i</sub></code> of the shifted
+     * @return the coefficients \(b_i\) of the shifted
      * polynomial.
      */
     public static double[] shift(final double[] coefficients,
@@ -443,7 +441,7 @@ public class PolynomialsUtils {
          * Generate recurrence coefficients.
          * @param k highest degree of the polynomials used in the recurrence
          * @return an array of three coefficients such that
-         * P<sub>k+1</sub>(X) = (a[0] + a[1] X) P<sub>k</sub>(X) - a[2] 
P<sub>k-1</sub>(X)
+         * \( P_{k+1}(x) = (a[0] + a[1] x) P_k(x) - a[2] P_{k-1}(x) \)
          */
         BigFraction[] generate(int k);
     }

Reply via email to