http://git-wip-us.apache.org/repos/asf/commons-math/blob/a7b4803f/src/main/java/org/apache/commons/math3/filter/KalmanFilter.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math3/filter/KalmanFilter.java 
b/src/main/java/org/apache/commons/math3/filter/KalmanFilter.java
deleted file mode 100644
index 2f204bf..0000000
--- a/src/main/java/org/apache/commons/math3/filter/KalmanFilter.java
+++ /dev/null
@@ -1,388 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math3.filter;
-
-import org.apache.commons.math3.exception.DimensionMismatchException;
-import org.apache.commons.math3.exception.NullArgumentException;
-import org.apache.commons.math3.linear.Array2DRowRealMatrix;
-import org.apache.commons.math3.linear.ArrayRealVector;
-import org.apache.commons.math3.linear.CholeskyDecomposition;
-import org.apache.commons.math3.linear.MatrixDimensionMismatchException;
-import org.apache.commons.math3.linear.MatrixUtils;
-import org.apache.commons.math3.linear.NonSquareMatrixException;
-import org.apache.commons.math3.linear.RealMatrix;
-import org.apache.commons.math3.linear.RealVector;
-import org.apache.commons.math3.linear.SingularMatrixException;
-import org.apache.commons.math3.util.MathUtils;
-
-/**
- * Implementation of a Kalman filter to estimate the state <i>x<sub>k</sub></i>
- * of a discrete-time controlled process that is governed by the linear
- * stochastic difference equation:
- *
- * <pre>
- * <i>x<sub>k</sub></i> = <b>A</b><i>x<sub>k-1</sub></i> + 
<b>B</b><i>u<sub>k-1</sub></i> + <i>w<sub>k-1</sub></i>
- * </pre>
- *
- * with a measurement <i>x<sub>k</sub></i> that is
- *
- * <pre>
- * <i>z<sub>k</sub></i> = <b>H</b><i>x<sub>k</sub></i> + <i>v<sub>k</sub></i>.
- * </pre>
- *
- * <p>
- * The random variables <i>w<sub>k</sub></i> and <i>v<sub>k</sub></i> represent
- * the process and measurement noise and are assumed to be independent of each
- * other and distributed with normal probability (white noise).
- * <p>
- * The Kalman filter cycle involves the following steps:
- * <ol>
- * <li>predict: project the current state estimate ahead in time</li>
- * <li>correct: adjust the projected estimate by an actual measurement</li>
- * </ol>
- * <p>
- * The Kalman filter is initialized with a {@link ProcessModel} and a
- * {@link MeasurementModel}, which contain the corresponding transformation and
- * noise covariance matrices. The parameter names used in the respective models
- * correspond to the following names commonly used in the mathematical
- * literature:
- * <ul>
- * <li>A - state transition matrix</li>
- * <li>B - control input matrix</li>
- * <li>H - measurement matrix</li>
- * <li>Q - process noise covariance matrix</li>
- * <li>R - measurement noise covariance matrix</li>
- * <li>P - error covariance matrix</li>
- * </ul>
- *
- * @see <a href="http://www.cs.unc.edu/~welch/kalman/";>Kalman filter
- *      resources</a>
- * @see <a href="http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf";>An
- *      introduction to the Kalman filter by Greg Welch and Gary Bishop</a>
- * @see <a href="http://academic.csuohio.edu/simond/courses/eec644/kalman.pdf";>
- *      Kalman filter example by Dan Simon</a>
- * @see ProcessModel
- * @see MeasurementModel
- * @since 3.0
- */
-public class KalmanFilter {
-    /** The process model used by this filter instance. */
-    private final ProcessModel processModel;
-    /** The measurement model used by this filter instance. */
-    private final MeasurementModel measurementModel;
-    /** The transition matrix, equivalent to A. */
-    private RealMatrix transitionMatrix;
-    /** The transposed transition matrix. */
-    private RealMatrix transitionMatrixT;
-    /** The control matrix, equivalent to B. */
-    private RealMatrix controlMatrix;
-    /** The measurement matrix, equivalent to H. */
-    private RealMatrix measurementMatrix;
-    /** The transposed measurement matrix. */
-    private RealMatrix measurementMatrixT;
-    /** The internal state estimation vector, equivalent to x hat. */
-    private RealVector stateEstimation;
-    /** The error covariance matrix, equivalent to P. */
-    private RealMatrix errorCovariance;
-
-    /**
-     * Creates a new Kalman filter with the given process and measurement 
models.
-     *
-     * @param process
-     *            the model defining the underlying process dynamics
-     * @param measurement
-     *            the model defining the given measurement characteristics
-     * @throws NullArgumentException
-     *             if any of the given inputs is null (except for the control 
matrix)
-     * @throws NonSquareMatrixException
-     *             if the transition matrix is non square
-     * @throws DimensionMismatchException
-     *             if the column dimension of the transition matrix does not 
match the dimension of the
-     *             initial state estimation vector
-     * @throws MatrixDimensionMismatchException
-     *             if the matrix dimensions do not fit together
-     */
-    public KalmanFilter(final ProcessModel process, final MeasurementModel 
measurement)
-            throws NullArgumentException, NonSquareMatrixException, 
DimensionMismatchException,
-                   MatrixDimensionMismatchException {
-
-        MathUtils.checkNotNull(process);
-        MathUtils.checkNotNull(measurement);
-
-        this.processModel = process;
-        this.measurementModel = measurement;
-
-        transitionMatrix = processModel.getStateTransitionMatrix();
-        MathUtils.checkNotNull(transitionMatrix);
-        transitionMatrixT = transitionMatrix.transpose();
-
-        // create an empty matrix if no control matrix was given
-        if (processModel.getControlMatrix() == null) {
-            controlMatrix = new Array2DRowRealMatrix();
-        } else {
-            controlMatrix = processModel.getControlMatrix();
-        }
-
-        measurementMatrix = measurementModel.getMeasurementMatrix();
-        MathUtils.checkNotNull(measurementMatrix);
-        measurementMatrixT = measurementMatrix.transpose();
-
-        // check that the process and measurement noise matrices are not null
-        // they will be directly accessed from the model as they may change
-        // over time
-        RealMatrix processNoise = processModel.getProcessNoise();
-        MathUtils.checkNotNull(processNoise);
-        RealMatrix measNoise = measurementModel.getMeasurementNoise();
-        MathUtils.checkNotNull(measNoise);
-
-        // set the initial state estimate to a zero vector if it is not
-        // available from the process model
-        if (processModel.getInitialStateEstimate() == null) {
-            stateEstimation = new 
ArrayRealVector(transitionMatrix.getColumnDimension());
-        } else {
-            stateEstimation = processModel.getInitialStateEstimate();
-        }
-
-        if (transitionMatrix.getColumnDimension() != 
stateEstimation.getDimension()) {
-            throw new 
DimensionMismatchException(transitionMatrix.getColumnDimension(),
-                                                 
stateEstimation.getDimension());
-        }
-
-        // initialize the error covariance to the process noise if it is not
-        // available from the process model
-        if (processModel.getInitialErrorCovariance() == null) {
-            errorCovariance = processNoise.copy();
-        } else {
-            errorCovariance = processModel.getInitialErrorCovariance();
-        }
-
-        // sanity checks, the control matrix B may be null
-
-        // A must be a square matrix
-        if (!transitionMatrix.isSquare()) {
-            throw new NonSquareMatrixException(
-                    transitionMatrix.getRowDimension(),
-                    transitionMatrix.getColumnDimension());
-        }
-
-        // row dimension of B must be equal to A
-        // if no control matrix is available, the row and column dimension 
will be 0
-        if (controlMatrix != null &&
-            controlMatrix.getRowDimension() > 0 &&
-            controlMatrix.getColumnDimension() > 0 &&
-            controlMatrix.getRowDimension() != 
transitionMatrix.getRowDimension()) {
-            throw new 
MatrixDimensionMismatchException(controlMatrix.getRowDimension(),
-                                                       
controlMatrix.getColumnDimension(),
-                                                       
transitionMatrix.getRowDimension(),
-                                                       
controlMatrix.getColumnDimension());
-        }
-
-        // Q must be equal to A
-        MatrixUtils.checkAdditionCompatible(transitionMatrix, processNoise);
-
-        // column dimension of H must be equal to row dimension of A
-        if (measurementMatrix.getColumnDimension() != 
transitionMatrix.getRowDimension()) {
-            throw new 
MatrixDimensionMismatchException(measurementMatrix.getRowDimension(),
-                                                       
measurementMatrix.getColumnDimension(),
-                                                       
measurementMatrix.getRowDimension(),
-                                                       
transitionMatrix.getRowDimension());
-        }
-
-        // row dimension of R must be equal to row dimension of H
-        if (measNoise.getRowDimension() != 
measurementMatrix.getRowDimension()) {
-            throw new 
MatrixDimensionMismatchException(measNoise.getRowDimension(),
-                                                       
measNoise.getColumnDimension(),
-                                                       
measurementMatrix.getRowDimension(),
-                                                       
measNoise.getColumnDimension());
-        }
-    }
-
-    /**
-     * Returns the dimension of the state estimation vector.
-     *
-     * @return the state dimension
-     */
-    public int getStateDimension() {
-        return stateEstimation.getDimension();
-    }
-
-    /**
-     * Returns the dimension of the measurement vector.
-     *
-     * @return the measurement vector dimension
-     */
-    public int getMeasurementDimension() {
-        return measurementMatrix.getRowDimension();
-    }
-
-    /**
-     * Returns the current state estimation vector.
-     *
-     * @return the state estimation vector
-     */
-    public double[] getStateEstimation() {
-        return stateEstimation.toArray();
-    }
-
-    /**
-     * Returns a copy of the current state estimation vector.
-     *
-     * @return the state estimation vector
-     */
-    public RealVector getStateEstimationVector() {
-        return stateEstimation.copy();
-    }
-
-    /**
-     * Returns the current error covariance matrix.
-     *
-     * @return the error covariance matrix
-     */
-    public double[][] getErrorCovariance() {
-        return errorCovariance.getData();
-    }
-
-    /**
-     * Returns a copy of the current error covariance matrix.
-     *
-     * @return the error covariance matrix
-     */
-    public RealMatrix getErrorCovarianceMatrix() {
-        return errorCovariance.copy();
-    }
-
-    /**
-     * Predict the internal state estimation one time step ahead.
-     */
-    public void predict() {
-        predict((RealVector) null);
-    }
-
-    /**
-     * Predict the internal state estimation one time step ahead.
-     *
-     * @param u
-     *            the control vector
-     * @throws DimensionMismatchException
-     *             if the dimension of the control vector does not fit
-     */
-    public void predict(final double[] u) throws DimensionMismatchException {
-        predict(new ArrayRealVector(u, false));
-    }
-
-    /**
-     * Predict the internal state estimation one time step ahead.
-     *
-     * @param u
-     *            the control vector
-     * @throws DimensionMismatchException
-     *             if the dimension of the control vector does not match
-     */
-    public void predict(final RealVector u) throws DimensionMismatchException {
-        // sanity checks
-        if (u != null &&
-            u.getDimension() != controlMatrix.getColumnDimension()) {
-            throw new DimensionMismatchException(u.getDimension(),
-                                                 
controlMatrix.getColumnDimension());
-        }
-
-        // project the state estimation ahead (a priori state)
-        // xHat(k)- = A * xHat(k-1) + B * u(k-1)
-        stateEstimation = transitionMatrix.operate(stateEstimation);
-
-        // add control input if it is available
-        if (u != null) {
-            stateEstimation = stateEstimation.add(controlMatrix.operate(u));
-        }
-
-        // project the error covariance ahead
-        // P(k)- = A * P(k-1) * A' + Q
-        errorCovariance = transitionMatrix.multiply(errorCovariance)
-                .multiply(transitionMatrixT)
-                .add(processModel.getProcessNoise());
-    }
-
-    /**
-     * Correct the current state estimate with an actual measurement.
-     *
-     * @param z
-     *            the measurement vector
-     * @throws NullArgumentException
-     *             if the measurement vector is {@code null}
-     * @throws DimensionMismatchException
-     *             if the dimension of the measurement vector does not fit
-     * @throws SingularMatrixException
-     *             if the covariance matrix could not be inverted
-     */
-    public void correct(final double[] z)
-            throws NullArgumentException, DimensionMismatchException, 
SingularMatrixException {
-        correct(new ArrayRealVector(z, false));
-    }
-
-    /**
-     * Correct the current state estimate with an actual measurement.
-     *
-     * @param z
-     *            the measurement vector
-     * @throws NullArgumentException
-     *             if the measurement vector is {@code null}
-     * @throws DimensionMismatchException
-     *             if the dimension of the measurement vector does not fit
-     * @throws SingularMatrixException
-     *             if the covariance matrix could not be inverted
-     */
-    public void correct(final RealVector z)
-            throws NullArgumentException, DimensionMismatchException, 
SingularMatrixException {
-
-        // sanity checks
-        MathUtils.checkNotNull(z);
-        if (z.getDimension() != measurementMatrix.getRowDimension()) {
-            throw new DimensionMismatchException(z.getDimension(),
-                                                 
measurementMatrix.getRowDimension());
-        }
-
-        // S = H * P(k) * H' + R
-        RealMatrix s = measurementMatrix.multiply(errorCovariance)
-            .multiply(measurementMatrixT)
-            .add(measurementModel.getMeasurementNoise());
-
-        // Inn = z(k) - H * xHat(k)-
-        RealVector innovation = 
z.subtract(measurementMatrix.operate(stateEstimation));
-
-        // calculate gain matrix
-        // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
-        // K(k) = P(k)- * H' * S^-1
-
-        // instead of calculating the inverse of S we can rearrange the 
formula,
-        // and then solve the linear equation A x X = B with A = S', X = K' 
and B = (H * P)'
-
-        // K(k) * S = P(k)- * H'
-        // S' * K(k)' = H * P(k)-'
-        RealMatrix kalmanGain = new CholeskyDecomposition(s).getSolver()
-                .solve(measurementMatrix.multiply(errorCovariance.transpose()))
-                .transpose();
-
-        // update estimate with measurement z(k)
-        // xHat(k) = xHat(k)- + K * Inn
-        stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));
-
-        // update covariance of prediction error
-        // P(k) = (I - K * H) * P(k)-
-        RealMatrix identity = 
MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension());
-        errorCovariance = 
identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance);
-    }
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/a7b4803f/src/main/java/org/apache/commons/math3/filter/MeasurementModel.java
----------------------------------------------------------------------
diff --git 
a/src/main/java/org/apache/commons/math3/filter/MeasurementModel.java 
b/src/main/java/org/apache/commons/math3/filter/MeasurementModel.java
deleted file mode 100644
index 2e0a379..0000000
--- a/src/main/java/org/apache/commons/math3/filter/MeasurementModel.java
+++ /dev/null
@@ -1,44 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math3.filter;
-
-import org.apache.commons.math3.linear.RealMatrix;
-
-/**
- * Defines the measurement model for the use with a {@link KalmanFilter}.
- *
- * @since 3.0
- */
-public interface MeasurementModel {
-    /**
-     * Returns the measurement matrix.
-     *
-     * @return the measurement matrix
-     */
-    RealMatrix getMeasurementMatrix();
-
-    /**
-     * Returns the measurement noise matrix. This method is called by the 
{@link KalmanFilter} every
-     * correction step, so implementations of this interface may return a 
modified measurement noise
-     * depending on the current iteration step.
-     *
-     * @return the measurement noise matrix
-     * @see KalmanFilter#correct(double[])
-     * @see KalmanFilter#correct(org.apache.commons.math3.linear.RealVector)
-     */
-    RealMatrix getMeasurementNoise();
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/a7b4803f/src/main/java/org/apache/commons/math3/filter/ProcessModel.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math3/filter/ProcessModel.java 
b/src/main/java/org/apache/commons/math3/filter/ProcessModel.java
deleted file mode 100644
index 179ed1b..0000000
--- a/src/main/java/org/apache/commons/math3/filter/ProcessModel.java
+++ /dev/null
@@ -1,73 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math3.filter;
-
-import org.apache.commons.math3.linear.RealMatrix;
-import org.apache.commons.math3.linear.RealVector;
-
-/**
- * Defines the process dynamics model for the use with a {@link KalmanFilter}.
- *
- * @since 3.0
- */
-public interface ProcessModel {
-    /**
-     * Returns the state transition matrix.
-     *
-     * @return the state transition matrix
-     */
-    RealMatrix getStateTransitionMatrix();
-
-    /**
-     * Returns the control matrix.
-     *
-     * @return the control matrix
-     */
-    RealMatrix getControlMatrix();
-
-    /**
-     * Returns the process noise matrix. This method is called by the {@link 
KalmanFilter} every
-     * prediction step, so implementations of this interface may return a 
modified process noise
-     * depending on the current iteration step.
-     *
-     * @return the process noise matrix
-     * @see KalmanFilter#predict()
-     * @see KalmanFilter#predict(double[])
-     * @see KalmanFilter#predict(RealVector)
-     */
-    RealMatrix getProcessNoise();
-
-    /**
-     * Returns the initial state estimation vector.
-     * <p>
-     * <b>Note:</b> if the return value is zero, the Kalman filter will 
initialize the
-     * state estimation with a zero vector.
-     *
-     * @return the initial state estimation vector
-     */
-    RealVector getInitialStateEstimate();
-
-    /**
-     * Returns the initial error covariance matrix.
-     * <p>
-     * <b>Note:</b> if the return value is zero, the Kalman filter will 
initialize the
-     * error covariance with the process noise matrix.
-     *
-     * @return the initial error covariance matrix
-     */
-    RealMatrix getInitialErrorCovariance();
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/a7b4803f/src/main/java/org/apache/commons/math3/filter/package-info.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math3/filter/package-info.java 
b/src/main/java/org/apache/commons/math3/filter/package-info.java
deleted file mode 100644
index 4e76536..0000000
--- a/src/main/java/org/apache/commons/math3/filter/package-info.java
+++ /dev/null
@@ -1,20 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-/**
- * Implementations of common discrete-time linear filters.
- */
-package org.apache.commons.math3.filter;

http://git-wip-us.apache.org/repos/asf/commons-math/blob/a7b4803f/src/main/java/org/apache/commons/math3/fitting/AbstractCurveFitter.java
----------------------------------------------------------------------
diff --git 
a/src/main/java/org/apache/commons/math3/fitting/AbstractCurveFitter.java 
b/src/main/java/org/apache/commons/math3/fitting/AbstractCurveFitter.java
deleted file mode 100644
index 6f39c23..0000000
--- a/src/main/java/org/apache/commons/math3/fitting/AbstractCurveFitter.java
+++ /dev/null
@@ -1,147 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math3.fitting;
-
-import java.util.Collection;
-
-import org.apache.commons.math3.analysis.MultivariateVectorFunction;
-import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
-import org.apache.commons.math3.analysis.ParametricUnivariateFunction;
-import org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer;
-import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem;
-import 
org.apache.commons.math3.fitting.leastsquares.LevenbergMarquardtOptimizer;
-
-/**
- * Base class that contains common code for fitting parametric univariate
- * real functions <code>y = f(p<sub>i</sub>;x)</code>, where {@code x} is
- * the independent variable and the <code>p<sub>i</sub></code> are the
- * <em>parameters</em>.
- * <br/>
- * A fitter will find the optimal values of the parameters by
- * <em>fitting</em> the curve so it remains very close to a set of
- * {@code N} observed points <code>(x<sub>k</sub>, y<sub>k</sub>)</code>,
- * {@code 0 <= k < N}.
- * <br/>
- * An algorithm usually performs the fit by finding the parameter
- * values that minimizes the objective function
- * <pre><code>
- *  &sum;y<sub>k</sub> - f(x<sub>k</sub>)<sup>2</sup>,
- * </code></pre>
- * which is actually a least-squares problem.
- * This class contains boilerplate code for calling the
- * {@link #fit(Collection)} method for obtaining the parameters.
- * The problem setup, such as the choice of optimization algorithm
- * for fitting a specific function is delegated to subclasses.
- *
- * @since 3.3
- */
-public abstract class AbstractCurveFitter {
-    /**
-     * Fits a curve.
-     * This method computes the coefficients of the curve that best
-     * fit the sample of observed points.
-     *
-     * @param points Observations.
-     * @return the fitted parameters.
-     */
-    public double[] fit(Collection<WeightedObservedPoint> points) {
-        // Perform the fit.
-        return 
getOptimizer().optimize(getProblem(points)).getPoint().toArray();
-    }
-
-    /**
-     * Creates an optimizer set up to fit the appropriate curve.
-     * <p>
-     * The default implementation uses a {@link LevenbergMarquardtOptimizer
-     * Levenberg-Marquardt} optimizer.
-     * </p>
-     * @return the optimizer to use for fitting the curve to the
-     * given {@code points}.
-     */
-    protected LeastSquaresOptimizer getOptimizer() {
-        return new LevenbergMarquardtOptimizer();
-    }
-
-    /**
-     * Creates a least squares problem corresponding to the appropriate curve.
-     *
-     * @param points Sample points.
-     * @return the least squares problem to use for fitting the curve to the
-     * given {@code points}.
-     */
-    protected abstract LeastSquaresProblem 
getProblem(Collection<WeightedObservedPoint> points);
-
-    /**
-     * Vector function for computing function theoretical values.
-     */
-    protected static class TheoreticalValuesFunction {
-        /** Function to fit. */
-        private final ParametricUnivariateFunction f;
-        /** Observations. */
-        private final double[] points;
-
-        /**
-         * @param f function to fit.
-         * @param observations Observations.
-         */
-        public TheoreticalValuesFunction(final ParametricUnivariateFunction f,
-                                         final 
Collection<WeightedObservedPoint> observations) {
-            this.f = f;
-
-            final int len = observations.size();
-            this.points = new double[len];
-            int i = 0;
-            for (WeightedObservedPoint obs : observations) {
-                this.points[i++] = obs.getX();
-            }
-        }
-
-        /**
-         * @return the model function values.
-         */
-        public MultivariateVectorFunction getModelFunction() {
-            return new MultivariateVectorFunction() {
-                /** {@inheritDoc} */
-                public double[] value(double[] p) {
-                    final int len = points.length;
-                    final double[] values = new double[len];
-                    for (int i = 0; i < len; i++) {
-                        values[i] = f.value(points[i], p);
-                    }
-
-                    return values;
-                }
-            };
-        }
-
-        /**
-         * @return the model function Jacobian.
-         */
-        public MultivariateMatrixFunction getModelFunctionJacobian() {
-            return new MultivariateMatrixFunction() {
-                public double[][] value(double[] p) {
-                    final int len = points.length;
-                    final double[][] jacobian = new double[len][];
-                    for (int i = 0; i < len; i++) {
-                        jacobian[i] = f.gradient(points[i], p);
-                    }
-                    return jacobian;
-                }
-            };
-        }
-    }
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/a7b4803f/src/main/java/org/apache/commons/math3/fitting/CurveFitter.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math3/fitting/CurveFitter.java 
b/src/main/java/org/apache/commons/math3/fitting/CurveFitter.java
deleted file mode 100644
index 0ddeacc..0000000
--- a/src/main/java/org/apache/commons/math3/fitting/CurveFitter.java
+++ /dev/null
@@ -1,232 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math3.fitting;
-
-import java.util.ArrayList;
-import java.util.List;
-import org.apache.commons.math3.analysis.MultivariateVectorFunction;
-import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
-import org.apache.commons.math3.analysis.ParametricUnivariateFunction;
-import org.apache.commons.math3.optim.MaxEval;
-import org.apache.commons.math3.optim.InitialGuess;
-import org.apache.commons.math3.optim.PointVectorValuePair;
-import 
org.apache.commons.math3.optim.nonlinear.vector.MultivariateVectorOptimizer;
-import org.apache.commons.math3.optim.nonlinear.vector.ModelFunction;
-import org.apache.commons.math3.optim.nonlinear.vector.ModelFunctionJacobian;
-import org.apache.commons.math3.optim.nonlinear.vector.Target;
-import org.apache.commons.math3.optim.nonlinear.vector.Weight;
-
-/**
- * Fitter for parametric univariate real functions y = f(x).
- * <br/>
- * When a univariate real function y = f(x) does depend on some
- * unknown parameters p<sub>0</sub>, p<sub>1</sub> ... p<sub>n-1</sub>,
- * this class can be used to find these parameters. It does this
- * by <em>fitting</em> the curve so it remains very close to a set of
- * observed points (x<sub>0</sub>, y<sub>0</sub>), (x<sub>1</sub>,
- * y<sub>1</sub>) ... (x<sub>k-1</sub>, y<sub>k-1</sub>). This fitting
- * is done by finding the parameters values that minimizes the objective
- * function &sum;(y<sub>i</sub>-f(x<sub>i</sub>))<sup>2</sup>. This is
- * really a least squares problem.
- *
- * @param <T> Function to use for the fit.
- *
- * @since 2.0
- * @deprecated As of 3.3. Please use {@link AbstractCurveFitter} and
- * {@link WeightedObservedPoints} instead.
- */
-@Deprecated
-public class CurveFitter<T extends ParametricUnivariateFunction> {
-    /** Optimizer to use for the fitting. */
-    private final MultivariateVectorOptimizer optimizer;
-    /** Observed points. */
-    private final List<WeightedObservedPoint> observations;
-
-    /**
-     * Simple constructor.
-     *
-     * @param optimizer Optimizer to use for the fitting.
-     * @since 3.1
-     */
-    public CurveFitter(final MultivariateVectorOptimizer optimizer) {
-        this.optimizer = optimizer;
-        observations = new ArrayList<WeightedObservedPoint>();
-    }
-
-    /** Add an observed (x,y) point to the sample with unit weight.
-     * <p>Calling this method is equivalent to call
-     * {@code addObservedPoint(1.0, x, y)}.</p>
-     * @param x abscissa of the point
-     * @param y observed value of the point at x, after fitting we should
-     * have f(x) as close as possible to this value
-     * @see #addObservedPoint(double, double, double)
-     * @see #addObservedPoint(WeightedObservedPoint)
-     * @see #getObservations()
-     */
-    public void addObservedPoint(double x, double y) {
-        addObservedPoint(1.0, x, y);
-    }
-
-    /** Add an observed weighted (x,y) point to the sample.
-     * @param weight weight of the observed point in the fit
-     * @param x abscissa of the point
-     * @param y observed value of the point at x, after fitting we should
-     * have f(x) as close as possible to this value
-     * @see #addObservedPoint(double, double)
-     * @see #addObservedPoint(WeightedObservedPoint)
-     * @see #getObservations()
-     */
-    public void addObservedPoint(double weight, double x, double y) {
-        observations.add(new WeightedObservedPoint(weight, x, y));
-    }
-
-    /** Add an observed weighted (x,y) point to the sample.
-     * @param observed observed point to add
-     * @see #addObservedPoint(double, double)
-     * @see #addObservedPoint(double, double, double)
-     * @see #getObservations()
-     */
-    public void addObservedPoint(WeightedObservedPoint observed) {
-        observations.add(observed);
-    }
-
-    /** Get the observed points.
-     * @return observed points
-     * @see #addObservedPoint(double, double)
-     * @see #addObservedPoint(double, double, double)
-     * @see #addObservedPoint(WeightedObservedPoint)
-     */
-    public WeightedObservedPoint[] getObservations() {
-        return observations.toArray(new 
WeightedObservedPoint[observations.size()]);
-    }
-
-    /**
-     * Remove all observations.
-     */
-    public void clearObservations() {
-        observations.clear();
-    }
-
-    /**
-     * Fit a curve.
-     * This method compute the coefficients of the curve that best
-     * fit the sample of observed points previously given through calls
-     * to the {@link #addObservedPoint(WeightedObservedPoint)
-     * addObservedPoint} method.
-     *
-     * @param f parametric function to fit.
-     * @param initialGuess first guess of the function parameters.
-     * @return the fitted parameters.
-     * @throws org.apache.commons.math3.exception.DimensionMismatchException
-     * if the start point dimension is wrong.
-     */
-    public double[] fit(T f, final double[] initialGuess) {
-        return fit(Integer.MAX_VALUE, f, initialGuess);
-    }
-
-    /**
-     * Fit a curve.
-     * This method compute the coefficients of the curve that best
-     * fit the sample of observed points previously given through calls
-     * to the {@link #addObservedPoint(WeightedObservedPoint)
-     * addObservedPoint} method.
-     *
-     * @param f parametric function to fit.
-     * @param initialGuess first guess of the function parameters.
-     * @param maxEval Maximum number of function evaluations.
-     * @return the fitted parameters.
-     * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
-     * if the number of allowed evaluations is exceeded.
-     * @throws org.apache.commons.math3.exception.DimensionMismatchException
-     * if the start point dimension is wrong.
-     * @since 3.0
-     */
-    public double[] fit(int maxEval, T f,
-                        final double[] initialGuess) {
-        // Prepare least squares problem.
-        double[] target  = new double[observations.size()];
-        double[] weights = new double[observations.size()];
-        int i = 0;
-        for (WeightedObservedPoint point : observations) {
-            target[i]  = point.getY();
-            weights[i] = point.getWeight();
-            ++i;
-        }
-
-        // Input to the optimizer: the model and its Jacobian.
-        final TheoreticalValuesFunction model = new 
TheoreticalValuesFunction(f);
-
-        // Perform the fit.
-        final PointVectorValuePair optimum
-            = optimizer.optimize(new MaxEval(maxEval),
-                                 model.getModelFunction(),
-                                 model.getModelFunctionJacobian(),
-                                 new Target(target),
-                                 new Weight(weights),
-                                 new InitialGuess(initialGuess));
-        // Extract the coefficients.
-        return optimum.getPointRef();
-    }
-
-    /** Vectorial function computing function theoretical values. */
-    private class TheoreticalValuesFunction {
-        /** Function to fit. */
-        private final ParametricUnivariateFunction f;
-
-        /**
-         * @param f function to fit.
-         */
-        public TheoreticalValuesFunction(final ParametricUnivariateFunction f) 
{
-            this.f = f;
-        }
-
-        /**
-         * @return the model function values.
-         */
-        public ModelFunction getModelFunction() {
-            return new ModelFunction(new MultivariateVectorFunction() {
-                    /** {@inheritDoc} */
-                    public double[] value(double[] point) {
-                        // compute the residuals
-                        final double[] values = new 
double[observations.size()];
-                        int i = 0;
-                        for (WeightedObservedPoint observed : observations) {
-                            values[i++] = f.value(observed.getX(), point);
-                        }
-
-                        return values;
-                    }
-                });
-        }
-
-        /**
-         * @return the model function Jacobian.
-         */
-        public ModelFunctionJacobian getModelFunctionJacobian() {
-            return new ModelFunctionJacobian(new MultivariateMatrixFunction() {
-                    public double[][] value(double[] point) {
-                        final double[][] jacobian = new 
double[observations.size()][];
-                        int i = 0;
-                        for (WeightedObservedPoint observed : observations) {
-                            jacobian[i++] = f.gradient(observed.getX(), point);
-                        }
-                        return jacobian;
-                    }
-                });
-        }
-    }
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/a7b4803f/src/main/java/org/apache/commons/math3/fitting/GaussianCurveFitter.java
----------------------------------------------------------------------
diff --git 
a/src/main/java/org/apache/commons/math3/fitting/GaussianCurveFitter.java 
b/src/main/java/org/apache/commons/math3/fitting/GaussianCurveFitter.java
deleted file mode 100644
index 64e0bda..0000000
--- a/src/main/java/org/apache/commons/math3/fitting/GaussianCurveFitter.java
+++ /dev/null
@@ -1,430 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math3.fitting;
-
-import java.util.ArrayList;
-import java.util.Collection;
-import java.util.Collections;
-import java.util.Comparator;
-import java.util.List;
-
-import org.apache.commons.math3.analysis.function.Gaussian;
-import org.apache.commons.math3.exception.NotStrictlyPositiveException;
-import org.apache.commons.math3.exception.NullArgumentException;
-import org.apache.commons.math3.exception.NumberIsTooSmallException;
-import org.apache.commons.math3.exception.OutOfRangeException;
-import org.apache.commons.math3.exception.ZeroException;
-import org.apache.commons.math3.exception.util.LocalizedFormats;
-import org.apache.commons.math3.fitting.leastsquares.LeastSquaresBuilder;
-import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem;
-import org.apache.commons.math3.linear.DiagonalMatrix;
-import org.apache.commons.math3.util.FastMath;
-
-/**
- * Fits points to a {@link
- * org.apache.commons.math3.analysis.function.Gaussian.Parametric Gaussian}
- * function.
- * <br/>
- * The {@link #withStartPoint(double[]) initial guess values} must be passed
- * in the following order:
- * <ul>
- *  <li>Normalization</li>
- *  <li>Mean</li>
- *  <li>Sigma</li>
- * </ul>
- * The optimal values will be returned in the same order.
- *
- * <p>
- * Usage example:
- * <pre>
- *   WeightedObservedPoints obs = new WeightedObservedPoints();
- *   obs.add(4.0254623,  531026.0);
- *   obs.add(4.03128248, 984167.0);
- *   obs.add(4.03839603, 1887233.0);
- *   obs.add(4.04421621, 2687152.0);
- *   obs.add(4.05132976, 3461228.0);
- *   obs.add(4.05326982, 3580526.0);
- *   obs.add(4.05779662, 3439750.0);
- *   obs.add(4.0636168,  2877648.0);
- *   obs.add(4.06943698, 2175960.0);
- *   obs.add(4.07525716, 1447024.0);
- *   obs.add(4.08237071, 717104.0);
- *   obs.add(4.08366408, 620014.0);
- *   double[] parameters = GaussianCurveFitter.create().fit(obs.toList());
- * </pre>
- *
- * @since 3.3
- */
-public class GaussianCurveFitter extends AbstractCurveFitter {
-    /** Parametric function to be fitted. */
-    private static final Gaussian.Parametric FUNCTION = new 
Gaussian.Parametric() {
-            @Override
-            public double value(double x, double ... p) {
-                double v = Double.POSITIVE_INFINITY;
-                try {
-                    v = super.value(x, p);
-                } catch (NotStrictlyPositiveException e) { // NOPMD
-                    // Do nothing.
-                }
-                return v;
-            }
-
-            @Override
-            public double[] gradient(double x, double ... p) {
-                double[] v = { Double.POSITIVE_INFINITY,
-                               Double.POSITIVE_INFINITY,
-                               Double.POSITIVE_INFINITY };
-                try {
-                    v = super.gradient(x, p);
-                } catch (NotStrictlyPositiveException e) { // NOPMD
-                    // Do nothing.
-                }
-                return v;
-            }
-        };
-    /** Initial guess. */
-    private final double[] initialGuess;
-    /** Maximum number of iterations of the optimization algorithm. */
-    private final int maxIter;
-
-    /**
-     * Contructor used by the factory methods.
-     *
-     * @param initialGuess Initial guess. If set to {@code null}, the initial 
guess
-     * will be estimated using the {@link ParameterGuesser}.
-     * @param maxIter Maximum number of iterations of the optimization 
algorithm.
-     */
-    private GaussianCurveFitter(double[] initialGuess,
-                                int maxIter) {
-        this.initialGuess = initialGuess;
-        this.maxIter = maxIter;
-    }
-
-    /**
-     * Creates a default curve fitter.
-     * The initial guess for the parameters will be {@link ParameterGuesser}
-     * computed automatically, and the maximum number of iterations of the
-     * optimization algorithm is set to {@link Integer#MAX_VALUE}.
-     *
-     * @return a curve fitter.
-     *
-     * @see #withStartPoint(double[])
-     * @see #withMaxIterations(int)
-     */
-    public static GaussianCurveFitter create() {
-        return new GaussianCurveFitter(null, Integer.MAX_VALUE);
-    }
-
-    /**
-     * Configure the start point (initial guess).
-     * @param newStart new start point (initial guess)
-     * @return a new instance.
-     */
-    public GaussianCurveFitter withStartPoint(double[] newStart) {
-        return new GaussianCurveFitter(newStart.clone(),
-                                       maxIter);
-    }
-
-    /**
-     * Configure the maximum number of iterations.
-     * @param newMaxIter maximum number of iterations
-     * @return a new instance.
-     */
-    public GaussianCurveFitter withMaxIterations(int newMaxIter) {
-        return new GaussianCurveFitter(initialGuess,
-                                       newMaxIter);
-    }
-
-    /** {@inheritDoc} */
-    @Override
-    protected LeastSquaresProblem getProblem(Collection<WeightedObservedPoint> 
observations) {
-
-        // Prepare least-squares problem.
-        final int len = observations.size();
-        final double[] target  = new double[len];
-        final double[] weights = new double[len];
-
-        int i = 0;
-        for (WeightedObservedPoint obs : observations) {
-            target[i]  = obs.getY();
-            weights[i] = obs.getWeight();
-            ++i;
-        }
-
-        final AbstractCurveFitter.TheoreticalValuesFunction model =
-                new AbstractCurveFitter.TheoreticalValuesFunction(FUNCTION, 
observations);
-
-        final double[] startPoint = initialGuess != null ?
-            initialGuess :
-            // Compute estimation.
-            new ParameterGuesser(observations).guess();
-
-        // Return a new least squares problem set up to fit a Gaussian curve 
to the
-        // observed points.
-        return new LeastSquaresBuilder().
-                maxEvaluations(Integer.MAX_VALUE).
-                maxIterations(maxIter).
-                start(startPoint).
-                target(target).
-                weight(new DiagonalMatrix(weights)).
-                model(model.getModelFunction(), 
model.getModelFunctionJacobian()).
-                build();
-
-    }
-
-    /**
-     * Guesses the parameters {@code norm}, {@code mean}, and {@code sigma}
-     * of a {@link 
org.apache.commons.math3.analysis.function.Gaussian.Parametric}
-     * based on the specified observed points.
-     */
-    public static class ParameterGuesser {
-        /** Normalization factor. */
-        private final double norm;
-        /** Mean. */
-        private final double mean;
-        /** Standard deviation. */
-        private final double sigma;
-
-        /**
-         * Constructs instance with the specified observed points.
-         *
-         * @param observations Observed points from which to guess the
-         * parameters of the Gaussian.
-         * @throws NullArgumentException if {@code observations} is
-         * {@code null}.
-         * @throws NumberIsTooSmallException if there are less than 3
-         * observations.
-         */
-        public ParameterGuesser(Collection<WeightedObservedPoint> 
observations) {
-            if (observations == null) {
-                throw new NullArgumentException(LocalizedFormats.INPUT_ARRAY);
-            }
-            if (observations.size() < 3) {
-                throw new NumberIsTooSmallException(observations.size(), 3, 
true);
-            }
-
-            final List<WeightedObservedPoint> sorted = 
sortObservations(observations);
-            final double[] params = basicGuess(sorted.toArray(new 
WeightedObservedPoint[0]));
-
-            norm = params[0];
-            mean = params[1];
-            sigma = params[2];
-        }
-
-        /**
-         * Gets an estimation of the parameters.
-         *
-         * @return the guessed parameters, in the following order:
-         * <ul>
-         *  <li>Normalization factor</li>
-         *  <li>Mean</li>
-         *  <li>Standard deviation</li>
-         * </ul>
-         */
-        public double[] guess() {
-            return new double[] { norm, mean, sigma };
-        }
-
-        /**
-         * Sort the observations.
-         *
-         * @param unsorted Input observations.
-         * @return the input observations, sorted.
-         */
-        private List<WeightedObservedPoint> 
sortObservations(Collection<WeightedObservedPoint> unsorted) {
-            final List<WeightedObservedPoint> observations = new 
ArrayList<WeightedObservedPoint>(unsorted);
-
-            final Comparator<WeightedObservedPoint> cmp = new 
Comparator<WeightedObservedPoint>() {
-                public int compare(WeightedObservedPoint p1,
-                                   WeightedObservedPoint p2) {
-                    if (p1 == null && p2 == null) {
-                        return 0;
-                    }
-                    if (p1 == null) {
-                        return -1;
-                    }
-                    if (p2 == null) {
-                        return 1;
-                    }
-                    if (p1.getX() < p2.getX()) {
-                        return -1;
-                    }
-                    if (p1.getX() > p2.getX()) {
-                        return 1;
-                    }
-                    if (p1.getY() < p2.getY()) {
-                        return -1;
-                    }
-                    if (p1.getY() > p2.getY()) {
-                        return 1;
-                    }
-                    if (p1.getWeight() < p2.getWeight()) {
-                        return -1;
-                    }
-                    if (p1.getWeight() > p2.getWeight()) {
-                        return 1;
-                    }
-                    return 0;
-                }
-            };
-
-            Collections.sort(observations, cmp);
-            return observations;
-        }
-
-        /**
-         * Guesses the parameters based on the specified observed points.
-         *
-         * @param points Observed points, sorted.
-         * @return the guessed parameters (normalization factor, mean and
-         * sigma).
-         */
-        private double[] basicGuess(WeightedObservedPoint[] points) {
-            final int maxYIdx = findMaxY(points);
-            final double n = points[maxYIdx].getY();
-            final double m = points[maxYIdx].getX();
-
-            double fwhmApprox;
-            try {
-                final double halfY = n + ((m - n) / 2);
-                final double fwhmX1 = interpolateXAtY(points, maxYIdx, -1, 
halfY);
-                final double fwhmX2 = interpolateXAtY(points, maxYIdx, 1, 
halfY);
-                fwhmApprox = fwhmX2 - fwhmX1;
-            } catch (OutOfRangeException e) {
-                // TODO: Exceptions should not be used for flow control.
-                fwhmApprox = points[points.length - 1].getX() - 
points[0].getX();
-            }
-            final double s = fwhmApprox / (2 * FastMath.sqrt(2 * 
FastMath.log(2)));
-
-            return new double[] { n, m, s };
-        }
-
-        /**
-         * Finds index of point in specified points with the largest Y.
-         *
-         * @param points Points to search.
-         * @return the index in specified points array.
-         */
-        private int findMaxY(WeightedObservedPoint[] points) {
-            int maxYIdx = 0;
-            for (int i = 1; i < points.length; i++) {
-                if (points[i].getY() > points[maxYIdx].getY()) {
-                    maxYIdx = i;
-                }
-            }
-            return maxYIdx;
-        }
-
-        /**
-         * Interpolates using the specified points to determine X at the
-         * specified Y.
-         *
-         * @param points Points to use for interpolation.
-         * @param startIdx Index within points from which to start the search 
for
-         * interpolation bounds points.
-         * @param idxStep Index step for searching interpolation bounds points.
-         * @param y Y value for which X should be determined.
-         * @return the value of X for the specified Y.
-         * @throws ZeroException if {@code idxStep} is 0.
-         * @throws OutOfRangeException if specified {@code y} is not within the
-         * range of the specified {@code points}.
-         */
-        private double interpolateXAtY(WeightedObservedPoint[] points,
-                                       int startIdx,
-                                       int idxStep,
-                                       double y)
-            throws OutOfRangeException {
-            if (idxStep == 0) {
-                throw new ZeroException();
-            }
-            final WeightedObservedPoint[] twoPoints
-                = getInterpolationPointsForY(points, startIdx, idxStep, y);
-            final WeightedObservedPoint p1 = twoPoints[0];
-            final WeightedObservedPoint p2 = twoPoints[1];
-            if (p1.getY() == y) {
-                return p1.getX();
-            }
-            if (p2.getY() == y) {
-                return p2.getX();
-            }
-            return p1.getX() + (((y - p1.getY()) * (p2.getX() - p1.getX())) /
-                                (p2.getY() - p1.getY()));
-        }
-
-        /**
-         * Gets the two bounding interpolation points from the specified points
-         * suitable for determining X at the specified Y.
-         *
-         * @param points Points to use for interpolation.
-         * @param startIdx Index within points from which to start search for
-         * interpolation bounds points.
-         * @param idxStep Index step for search for interpolation bounds 
points.
-         * @param y Y value for which X should be determined.
-         * @return the array containing two points suitable for determining X 
at
-         * the specified Y.
-         * @throws ZeroException if {@code idxStep} is 0.
-         * @throws OutOfRangeException if specified {@code y} is not within the
-         * range of the specified {@code points}.
-         */
-        private WeightedObservedPoint[] 
getInterpolationPointsForY(WeightedObservedPoint[] points,
-                                                                   int 
startIdx,
-                                                                   int idxStep,
-                                                                   double y)
-            throws OutOfRangeException {
-            if (idxStep == 0) {
-                throw new ZeroException();
-            }
-            for (int i = startIdx;
-                 idxStep < 0 ? i + idxStep >= 0 : i + idxStep < points.length;
-                 i += idxStep) {
-                final WeightedObservedPoint p1 = points[i];
-                final WeightedObservedPoint p2 = points[i + idxStep];
-                if (isBetween(y, p1.getY(), p2.getY())) {
-                    if (idxStep < 0) {
-                        return new WeightedObservedPoint[] { p2, p1 };
-                    } else {
-                        return new WeightedObservedPoint[] { p1, p2 };
-                    }
-                }
-            }
-
-            // Boundaries are replaced by dummy values because the raised
-            // exception is caught and the message never displayed.
-            // TODO: Exceptions should not be used for flow control.
-            throw new OutOfRangeException(y,
-                                          Double.NEGATIVE_INFINITY,
-                                          Double.POSITIVE_INFINITY);
-        }
-
-        /**
-         * Determines whether a value is between two other values.
-         *
-         * @param value Value to test whether it is between {@code boundary1}
-         * and {@code boundary2}.
-         * @param boundary1 One end of the range.
-         * @param boundary2 Other end of the range.
-         * @return {@code true} if {@code value} is between {@code boundary1} 
and
-         * {@code boundary2} (inclusive), {@code false} otherwise.
-         */
-        private boolean isBetween(double value,
-                                  double boundary1,
-                                  double boundary2) {
-            return (value >= boundary1 && value <= boundary2) ||
-                (value >= boundary2 && value <= boundary1);
-        }
-    }
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/a7b4803f/src/main/java/org/apache/commons/math3/fitting/GaussianFitter.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math3/fitting/GaussianFitter.java 
b/src/main/java/org/apache/commons/math3/fitting/GaussianFitter.java
deleted file mode 100644
index 3946540..0000000
--- a/src/main/java/org/apache/commons/math3/fitting/GaussianFitter.java
+++ /dev/null
@@ -1,364 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math3.fitting;
-
-import java.util.Arrays;
-import java.util.Comparator;
-import org.apache.commons.math3.analysis.function.Gaussian;
-import org.apache.commons.math3.exception.NullArgumentException;
-import org.apache.commons.math3.exception.NumberIsTooSmallException;
-import org.apache.commons.math3.exception.OutOfRangeException;
-import org.apache.commons.math3.exception.ZeroException;
-import org.apache.commons.math3.exception.NotStrictlyPositiveException;
-import org.apache.commons.math3.exception.util.LocalizedFormats;
-import 
org.apache.commons.math3.optim.nonlinear.vector.MultivariateVectorOptimizer;
-import org.apache.commons.math3.util.FastMath;
-
-/**
- * Fits points to a {@link
- * org.apache.commons.math3.analysis.function.Gaussian.Parametric Gaussian} 
function.
- * <p>
- * Usage example:
- * <pre>
- *   GaussianFitter fitter = new GaussianFitter(
- *     new LevenbergMarquardtOptimizer());
- *   fitter.addObservedPoint(4.0254623,  531026.0);
- *   fitter.addObservedPoint(4.03128248, 984167.0);
- *   fitter.addObservedPoint(4.03839603, 1887233.0);
- *   fitter.addObservedPoint(4.04421621, 2687152.0);
- *   fitter.addObservedPoint(4.05132976, 3461228.0);
- *   fitter.addObservedPoint(4.05326982, 3580526.0);
- *   fitter.addObservedPoint(4.05779662, 3439750.0);
- *   fitter.addObservedPoint(4.0636168,  2877648.0);
- *   fitter.addObservedPoint(4.06943698, 2175960.0);
- *   fitter.addObservedPoint(4.07525716, 1447024.0);
- *   fitter.addObservedPoint(4.08237071, 717104.0);
- *   fitter.addObservedPoint(4.08366408, 620014.0);
- *   double[] parameters = fitter.fit();
- * </pre>
- *
- * @since 2.2
- * @deprecated As of 3.3. Please use {@link GaussianCurveFitter} and
- * {@link WeightedObservedPoints} instead.
- */
-@Deprecated
-public class GaussianFitter extends CurveFitter<Gaussian.Parametric> {
-    /**
-     * Constructs an instance using the specified optimizer.
-     *
-     * @param optimizer Optimizer to use for the fitting.
-     */
-    public GaussianFitter(MultivariateVectorOptimizer optimizer) {
-        super(optimizer);
-    }
-
-    /**
-     * Fits a Gaussian function to the observed points.
-     *
-     * @param initialGuess First guess values in the following order:
-     * <ul>
-     *  <li>Norm</li>
-     *  <li>Mean</li>
-     *  <li>Sigma</li>
-     * </ul>
-     * @return the parameters of the Gaussian function that best fits the
-     * observed points (in the same order as above).
-     * @since 3.0
-     */
-    public double[] fit(double[] initialGuess) {
-        final Gaussian.Parametric f = new Gaussian.Parametric() {
-                @Override
-                public double value(double x, double ... p) {
-                    double v = Double.POSITIVE_INFINITY;
-                    try {
-                        v = super.value(x, p);
-                    } catch (NotStrictlyPositiveException e) { // NOPMD
-                        // Do nothing.
-                    }
-                    return v;
-                }
-
-                @Override
-                public double[] gradient(double x, double ... p) {
-                    double[] v = { Double.POSITIVE_INFINITY,
-                                   Double.POSITIVE_INFINITY,
-                                   Double.POSITIVE_INFINITY };
-                    try {
-                        v = super.gradient(x, p);
-                    } catch (NotStrictlyPositiveException e) { // NOPMD
-                        // Do nothing.
-                    }
-                    return v;
-                }
-            };
-
-        return fit(f, initialGuess);
-    }
-
-    /**
-     * Fits a Gaussian function to the observed points.
-     *
-     * @return the parameters of the Gaussian function that best fits the
-     * observed points (in the same order as above).
-     */
-    public double[] fit() {
-        final double[] guess = (new 
ParameterGuesser(getObservations())).guess();
-        return fit(guess);
-    }
-
-    /**
-     * Guesses the parameters {@code norm}, {@code mean}, and {@code sigma}
-     * of a {@link 
org.apache.commons.math3.analysis.function.Gaussian.Parametric}
-     * based on the specified observed points.
-     */
-    public static class ParameterGuesser {
-        /** Normalization factor. */
-        private final double norm;
-        /** Mean. */
-        private final double mean;
-        /** Standard deviation. */
-        private final double sigma;
-
-        /**
-         * Constructs instance with the specified observed points.
-         *
-         * @param observations Observed points from which to guess the
-         * parameters of the Gaussian.
-         * @throws NullArgumentException if {@code observations} is
-         * {@code null}.
-         * @throws NumberIsTooSmallException if there are less than 3
-         * observations.
-         */
-        public ParameterGuesser(WeightedObservedPoint[] observations) {
-            if (observations == null) {
-                throw new NullArgumentException(LocalizedFormats.INPUT_ARRAY);
-            }
-            if (observations.length < 3) {
-                throw new NumberIsTooSmallException(observations.length, 3, 
true);
-            }
-
-            final WeightedObservedPoint[] sorted = 
sortObservations(observations);
-            final double[] params = basicGuess(sorted);
-
-            norm = params[0];
-            mean = params[1];
-            sigma = params[2];
-        }
-
-        /**
-         * Gets an estimation of the parameters.
-         *
-         * @return the guessed parameters, in the following order:
-         * <ul>
-         *  <li>Normalization factor</li>
-         *  <li>Mean</li>
-         *  <li>Standard deviation</li>
-         * </ul>
-         */
-        public double[] guess() {
-            return new double[] { norm, mean, sigma };
-        }
-
-        /**
-         * Sort the observations.
-         *
-         * @param unsorted Input observations.
-         * @return the input observations, sorted.
-         */
-        private WeightedObservedPoint[] 
sortObservations(WeightedObservedPoint[] unsorted) {
-            final WeightedObservedPoint[] observations = unsorted.clone();
-            final Comparator<WeightedObservedPoint> cmp
-                = new Comparator<WeightedObservedPoint>() {
-                public int compare(WeightedObservedPoint p1,
-                                   WeightedObservedPoint p2) {
-                    if (p1 == null && p2 == null) {
-                        return 0;
-                    }
-                    if (p1 == null) {
-                        return -1;
-                    }
-                    if (p2 == null) {
-                        return 1;
-                    }
-                    if (p1.getX() < p2.getX()) {
-                        return -1;
-                    }
-                    if (p1.getX() > p2.getX()) {
-                        return 1;
-                    }
-                    if (p1.getY() < p2.getY()) {
-                        return -1;
-                    }
-                    if (p1.getY() > p2.getY()) {
-                        return 1;
-                    }
-                    if (p1.getWeight() < p2.getWeight()) {
-                        return -1;
-                    }
-                    if (p1.getWeight() > p2.getWeight()) {
-                        return 1;
-                    }
-                    return 0;
-                }
-            };
-
-            Arrays.sort(observations, cmp);
-            return observations;
-        }
-
-        /**
-         * Guesses the parameters based on the specified observed points.
-         *
-         * @param points Observed points, sorted.
-         * @return the guessed parameters (normalization factor, mean and
-         * sigma).
-         */
-        private double[] basicGuess(WeightedObservedPoint[] points) {
-            final int maxYIdx = findMaxY(points);
-            final double n = points[maxYIdx].getY();
-            final double m = points[maxYIdx].getX();
-
-            double fwhmApprox;
-            try {
-                final double halfY = n + ((m - n) / 2);
-                final double fwhmX1 = interpolateXAtY(points, maxYIdx, -1, 
halfY);
-                final double fwhmX2 = interpolateXAtY(points, maxYIdx, 1, 
halfY);
-                fwhmApprox = fwhmX2 - fwhmX1;
-            } catch (OutOfRangeException e) {
-                // TODO: Exceptions should not be used for flow control.
-                fwhmApprox = points[points.length - 1].getX() - 
points[0].getX();
-            }
-            final double s = fwhmApprox / (2 * FastMath.sqrt(2 * 
FastMath.log(2)));
-
-            return new double[] { n, m, s };
-        }
-
-        /**
-         * Finds index of point in specified points with the largest Y.
-         *
-         * @param points Points to search.
-         * @return the index in specified points array.
-         */
-        private int findMaxY(WeightedObservedPoint[] points) {
-            int maxYIdx = 0;
-            for (int i = 1; i < points.length; i++) {
-                if (points[i].getY() > points[maxYIdx].getY()) {
-                    maxYIdx = i;
-                }
-            }
-            return maxYIdx;
-        }
-
-        /**
-         * Interpolates using the specified points to determine X at the
-         * specified Y.
-         *
-         * @param points Points to use for interpolation.
-         * @param startIdx Index within points from which to start the search 
for
-         * interpolation bounds points.
-         * @param idxStep Index step for searching interpolation bounds points.
-         * @param y Y value for which X should be determined.
-         * @return the value of X for the specified Y.
-         * @throws ZeroException if {@code idxStep} is 0.
-         * @throws OutOfRangeException if specified {@code y} is not within the
-         * range of the specified {@code points}.
-         */
-        private double interpolateXAtY(WeightedObservedPoint[] points,
-                                       int startIdx,
-                                       int idxStep,
-                                       double y)
-            throws OutOfRangeException {
-            if (idxStep == 0) {
-                throw new ZeroException();
-            }
-            final WeightedObservedPoint[] twoPoints
-                = getInterpolationPointsForY(points, startIdx, idxStep, y);
-            final WeightedObservedPoint p1 = twoPoints[0];
-            final WeightedObservedPoint p2 = twoPoints[1];
-            if (p1.getY() == y) {
-                return p1.getX();
-            }
-            if (p2.getY() == y) {
-                return p2.getX();
-            }
-            return p1.getX() + (((y - p1.getY()) * (p2.getX() - p1.getX())) /
-                                (p2.getY() - p1.getY()));
-        }
-
-        /**
-         * Gets the two bounding interpolation points from the specified points
-         * suitable for determining X at the specified Y.
-         *
-         * @param points Points to use for interpolation.
-         * @param startIdx Index within points from which to start search for
-         * interpolation bounds points.
-         * @param idxStep Index step for search for interpolation bounds 
points.
-         * @param y Y value for which X should be determined.
-         * @return the array containing two points suitable for determining X 
at
-         * the specified Y.
-         * @throws ZeroException if {@code idxStep} is 0.
-         * @throws OutOfRangeException if specified {@code y} is not within the
-         * range of the specified {@code points}.
-         */
-        private WeightedObservedPoint[] 
getInterpolationPointsForY(WeightedObservedPoint[] points,
-                                                                   int 
startIdx,
-                                                                   int idxStep,
-                                                                   double y)
-            throws OutOfRangeException {
-            if (idxStep == 0) {
-                throw new ZeroException();
-            }
-            for (int i = startIdx;
-                 idxStep < 0 ? i + idxStep >= 0 : i + idxStep < points.length;
-                 i += idxStep) {
-                final WeightedObservedPoint p1 = points[i];
-                final WeightedObservedPoint p2 = points[i + idxStep];
-                if (isBetween(y, p1.getY(), p2.getY())) {
-                    if (idxStep < 0) {
-                        return new WeightedObservedPoint[] { p2, p1 };
-                    } else {
-                        return new WeightedObservedPoint[] { p1, p2 };
-                    }
-                }
-            }
-
-            // Boundaries are replaced by dummy values because the raised
-            // exception is caught and the message never displayed.
-            // TODO: Exceptions should not be used for flow control.
-            throw new OutOfRangeException(y,
-                                          Double.NEGATIVE_INFINITY,
-                                          Double.POSITIVE_INFINITY);
-        }
-
-        /**
-         * Determines whether a value is between two other values.
-         *
-         * @param value Value to test whether it is between {@code boundary1}
-         * and {@code boundary2}.
-         * @param boundary1 One end of the range.
-         * @param boundary2 Other end of the range.
-         * @return {@code true} if {@code value} is between {@code boundary1} 
and
-         * {@code boundary2} (inclusive), {@code false} otherwise.
-         */
-        private boolean isBetween(double value,
-                                  double boundary1,
-                                  double boundary2) {
-            return (value >= boundary1 && value <= boundary2) ||
-                (value >= boundary2 && value <= boundary1);
-        }
-    }
-}

Reply via email to