Here's a function I wrote to calculate hourly averages: It seems a bit slow, however... any thoughts on how to improve it?
def calc_hravg(X): """Calculates hourly average from input data""" X_hr = [] minX = X[:,0].min() hr = dt.datetime(*minX.timetuple()[0:4]) while hr <= dt.datetime(*X[-1,0].timetuple()[0:4]): nhr = hr + dt.timedelta(hours=1) ind = np.where( (X[:,0] > hr) & (X[:,0] < nhr) ) vals = X[ind,1][0].T try: #hr_avg = np.sum(vals) / len(vals) hr_avg = np.average(vals) except: hr_avg = np.nan X_hr.append([hr,hr_avg]) hr = hr + dt.timedelta(hours=1) return np.array(X_hr) -- View this message in context: http://www.nabble.com/using-datetime-and-calculating-hourly-average-tp24370537p24370537.html Sent from the Python - tutor mailing list archive at Nabble.com. _______________________________________________ Tutor maillist - Tutor@python.org http://mail.python.org/mailman/listinfo/tutor