---------- Forwarded message ---------- From: Jervis Whitley <jervi...@gmail.com> Date: Wed, Jan 14, 2009 at 9:26 AM Subject: Re: [Tutor] Gamma distribution function To: culpritNr1 <ig2ar-s...@yahoo.co.uk>
On Wed, Jan 14, 2009 at 9:11 AM, culpritNr1 <ig2ar-s...@yahoo.co.uk> wrote: > > The python documentation on this functionality is extremely poor. Look > >>> help("scipy.stats.distributions.poisson.rvs") > Help on method rvs in scipy.stats.distributions.poisson: > scipy.stats.distributions.poisson.rvs = rvs(self, *args, **kwds) method of > scipy.stats.distributions.poisson_gen instance > > Do you understand what's going on? > > Thanks, > > culpritNr1 > > > -- > View this message in context: > http://www.nabble.com/Gamma-distribution-function-tp21444899p21445597.html > Sent from the Python - tutor mailing list archive at Nabble.com. > > _______________________________________________ > Tutor maillist - Tutor@python.org > http://mail.python.org/mailman/listinfo/tutor > Your previous email said you wanted to sample from the poisson function, which is what that rvs method is doing, taking random samples from a poisson distribution of lambda = 1 in your case. They also provide a means to shift the function from a nominal x crossing of 0 using the second argument, in your case you have used 2. So you were sampling from a function of mean 1 shifted right by 2. The below has been taken from the poisson documentation itself: print stats.distributions.poisson.__doc__ A poisson discrete random variable. Discrete random variables are defined from a standard form. The standard form may require some other parameters to complete its specification. The distribution methods also take an optional location parameter using loc= keyword. The default is loc=0. The calling form of the methods follow: poisson.rvs(mu,loc=0) - random variates poisson.pmf(x,mu,loc=0) - probability mass function poisson.cdf(x,mu,loc=0) - cumulative density function poisson.sf(x,mu,loc=0) - survival function (1-cdf --- sometimes more accurate) poisson.ppf(q,mu,loc=0) - percent point function (inverse of cdf --- percentiles) poisson.isf(q,mu,loc=0) - inverse survival function (inverse of sf) poisson.stats(mu,loc=0,moments='mv') - mean('m',axis=0), variance('v'), skew('s'), and/or kurtosis('k') poisson.entropy(mu,loc=0) - entropy of the RV Alternatively, the object may be called (as a function) to fix the shape and location parameters returning a "frozen" discrete RV object: myrv = poisson(mu,loc=0) - frozen RV object with the same methods but holding the given shape and location fixed. You can construct an aribtrary discrete rv where P{X=xk} = pk by passing to the rv_discrete initialization method (through the values= keyword) a tuple of sequences (xk,pk) which describes only those values of X (xk) that occur with nonzero probability (pk). Poisson distribution poisson.pmf(k, mu) = exp(-mu) * mu**k / k! for k >= 0 If you are after a probability at a given k (which it now sounds like you may be after) you might be interested in the pmf method. (Sorry I did a reply instead of reply-all) Cheers, Jervis
_______________________________________________ Tutor maillist - Tutor@python.org http://mail.python.org/mailman/listinfo/tutor