Am Mon, Jan 23, 2023 at 04:34:27PM -0600 schrieb Scott Cheloha: > Whoops, missed one. This is the fifth and (I think) last armv7 clock > interrupt driver that needs to switch to clockintr. gptimer(4) is > nearly identical to dmtimer(4). > > Notable changes: > > - Switch stathz from 128 to hz. > - Switch profhz from 1024 to (stathz * 10). > > Everything else in the patch is just normal clockintr switching stuff > or duplicated from the dmtimer(4) patch. > > jca@ has compile-tested this. > > I would appreciate a test to confirm that the GENERIC boots. I don't > think we need to do a full release build. > > ... if nobody knows where to find a board with gptimer(4), I am > looking for permission to just commit this as-is. I cannot find any > entries in the dmesg mails of any machines with gptimer(4). kettenis@ > was uncertain whether we actually support any of the machines that have > this clock. > > Preferences? ok?
Should we just get rid of it? It's only used on OMAP3, which was already outdated when I started my ARMv7 endeavour a decade ago. I never had that machine, drahn@ might have one in the attic. The relevant platforms were the Pandaboard (OMAP4) and the BeagleBone Black (AM335x). But the OMAP3, did this thing ever work? > Index: gptimer.c > =================================================================== > RCS file: /cvs/src/sys/arch/armv7/omap/gptimer.c,v > retrieving revision 1.17 > diff -u -p -r1.17 gptimer.c > --- gptimer.c 22 Jan 2023 18:36:38 -0000 1.17 > +++ gptimer.c 22 Jan 2023 23:52:32 -0000 > @@ -23,9 +23,11 @@ > > #include <sys/param.h> > #include <sys/systm.h> > +#include <sys/clockintr.h> > #include <sys/kernel.h> > #include <sys/evcount.h> > #include <sys/device.h> > +#include <sys/stdint.h> > #include <sys/timetc.h> > #include <machine/bus.h> > #include <armv7/armv7/armv7var.h> > @@ -93,14 +95,12 @@ > > #define TIMER_FREQUENCY 32768 /* 32kHz is used, > selectable */ > > -static struct evcount clk_count; > -static struct evcount stat_count; > - > void gptimer_attach(struct device *parent, struct device *self, void *args); > int gptimer_intr(void *frame); > void gptimer_wait(int reg); > void gptimer_cpu_initclocks(void); > void gptimer_delay(u_int); > +void gptimer_reset_tisr(void); > void gptimer_setstatclockrate(int newhz); > > bus_space_tag_t gptimer_iot; > @@ -120,13 +120,16 @@ static struct timecounter gptimer_timeco > .tc_user = 0, > }; > > -volatile u_int32_t nexttickevent; > -volatile u_int32_t nextstatevent; > -u_int32_t ticks_per_second; > -u_int32_t ticks_per_intr; > -u_int32_t ticks_err_cnt; > -u_int32_t ticks_err_sum; > -u_int32_t statvar, statmin; > +uint64_t gptimer_nsec_cycle_ratio; > +uint64_t gptimer_nsec_max; > + > +void gptimer_rearm(void *, uint64_t); > +void gptimer_trigger(void *); > + > +const struct intrclock gptimer_intrclock = { > + .ic_rearm = gptimer_rearm, > + .ic_trigger = gptimer_trigger > +}; > > const struct cfattach gptimer_ca = { > sizeof (struct device), NULL, gptimer_attach > @@ -177,98 +180,10 @@ gptimer_attach(struct device *parent, st > gptimer_setstatclockrate, NULL); > } > > -/* > - * See comment in arm/xscale/i80321_clock.c > - * > - * counter is count up, but with autoreload timers it is not possible > - * to detect how many interrupts passed while interrupts were blocked. > - * also it is not possible to atomically add to the register > - * get get it to precisely fire at a non-fixed interval. > - * > - * To work around this two timers are used, GPT1 is used as a reference > - * clock without reload , however we just ignore the interrupt it > - * would (may?) generate. > - * > - * Internally this keeps track of when the next timer should fire > - * and based on that time and the current value of the reference > - * clock a number is written into the timer count register to schedule > - * the next event. > - */ > - > int > gptimer_intr(void *frame) > { > - u_int32_t now, r; > - u_int32_t nextevent, duration; > - > - /* clear interrupt */ > - now = bus_space_read_4(gptimer_iot, gptimer_ioh1, GP_TCRR); > - > - while ((int32_t) (nexttickevent - now) < 0) { > - nexttickevent += ticks_per_intr; > - ticks_err_sum += ticks_err_cnt; > -#if 0 > - if (ticks_err_sum > hz) { > - u_int32_t match_error; > - match_error = ticks_err_sum / hz > - ticks_err_sum -= (match_error * hz); > - } > -#else > - /* looping a few times is faster than divide */ > - while (ticks_err_sum > hz) { > - nexttickevent += 1; > - ticks_err_sum -= hz; > - } > -#endif > - clk_count.ec_count++; > - hardclock(frame); > - } > - while ((int32_t) (nextstatevent - now) < 0) { > - do { > - r = random() & (statvar -1); > - } while (r == 0); /* random == 0 not allowed */ > - nextstatevent += statmin + r; > - /* XXX - correct nextstatevent? */ > - stat_count.ec_count++; > - statclock(frame); > - } > - if ((nexttickevent - now) < (nextstatevent - now)) > - nextevent = nexttickevent; > - else > - nextevent = nextstatevent; > - > -/* XXX */ > - duration = nextevent - > - bus_space_read_4(gptimer_iot, gptimer_ioh1, GP_TCRR); > -#if 0 > - printf("duration 0x%x %x %x\n", nextevent - > - bus_space_read_4(gptimer_iot, gptimer_ioh1, GP_TCRR), > - bus_space_read_4(gptimer_iot, gptimer_ioh0, GP_TCRR), > - bus_space_read_4(gptimer_iot, gptimer_ioh1, GP_TCRR)); > -#endif > - > - > - if (duration <= 0) > - duration = 1; /* trigger immediately. */ > - > - if (duration > ticks_per_intr) { > - /* > - * If interrupts are blocked too long, like during > - * the root prompt or ddb, the timer can roll over, > - * this will allow the system to continue to run > - * even if time is lost. > - */ > - duration = ticks_per_intr; > - nexttickevent = now; > - nextstatevent = now; > - } > - > - gptimer_wait(GP_TWPS_ALL); > - bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TISR, > - bus_space_read_4(gptimer_iot, gptimer_ioh0, GP_TISR)); > - gptimer_wait(GP_TWPS_ALL); > - bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TCRR, -duration); > - > + clockintr_dispatch(frame); > return 1; > } > > @@ -281,44 +196,31 @@ gptimer_intr(void *frame) > void > gptimer_cpu_initclocks(void) > { > - stathz = 128; > - profhz = 1024; > + stathz = hz; > + profhz = stathz * 10; > + clockintr_init(CL_RNDSTAT); > > - ticks_per_second = TIMER_FREQUENCY; > - > - setstatclockrate(stathz); > - > - ticks_per_intr = ticks_per_second / hz; > - ticks_err_cnt = ticks_per_second % hz; > - ticks_err_sum = 0; > + gptimer_nsec_cycle_ratio = TIMER_FREQUENCY * (1ULL << 32) / 1000000000; > + gptimer_nsec_max = UINT64_MAX / gptimer_nsec_cycle_ratio; > > prcm_setclock(1, PRCM_CLK_SPEED_32); > prcm_setclock(2, PRCM_CLK_SPEED_32); > + > /* establish interrupts */ > arm_intr_establish(gptimer_irq, IPL_CLOCK, gptimer_intr, > NULL, "tick"); > > /* setup timer 0 (hardware timer 2) */ > /* reset? - XXX */ > - > - bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TLDR, 0); > - > - nexttickevent = nextstatevent = bus_space_read_4(gptimer_iot, > - gptimer_ioh1, GP_TCRR) + ticks_per_intr; > - > gptimer_wait(GP_TWPS_ALL); > bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TIER, GP_TIER_OVF_EN); > gptimer_wait(GP_TWPS_ALL); > bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TWER, GP_TWER_OVF_EN); > gptimer_wait(GP_TWPS_ALL); > - bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TCLR, > - GP_TCLR_AR | GP_TCLR_ST); > - gptimer_wait(GP_TWPS_ALL); > - bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TISR, > - bus_space_read_4(gptimer_iot, gptimer_ioh0, GP_TISR)); > - gptimer_wait(GP_TWPS_ALL); > - bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TCRR, -ticks_per_intr); > - gptimer_wait(GP_TWPS_ALL); > + > + /* start the clock interrupt cycle */ > + clockintr_cpu_init(&gptimer_intrclock); > + clockintr_trigger(); > } > > void > @@ -328,6 +230,61 @@ gptimer_wait(int reg) > ; > } > > +/* > + * Clear all interrupt status bits. > + */ > +void > +gptimer_reset_tisr(void) > +{ > + u_int32_t tisr; > + > + tisr = bus_space_read_4(gptimer_iot, gptimerioh0, GP_TISR); > + bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TISR, tisr); > +} > + > +void > +gptimer_rearm(void *unused, uint64_t nsecs) > +{ > + uint32_t cycles; > + u_long s; > + > + if (nsecs > gptimer_nsec_max) > + nsecs = gptimer_nsec_max; > + cycles = (nsecs * gptimer_nsec_cycle_ratio) >> 32; > + > + s = intr_disable(); > + gptimer_reset_tisr(); > + bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TCRR, > + UINT32_MAX - cycles); > + bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TCLR, GP_TCLR_ST); > + gptimer_wait(GP_TWPS_ALL); > + intr_restore(s); > +} > + > +void > +gptimer_trigger(void *unused) > +{ > + u_long s; > + > + s = intr_disable(); > + > + /* stop timer. */ > + bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TCLR, 0); > + gptimer_wait(GP_TWPS_ALL); > + > + /* clear interrupt status bits. */ > + gptimer_reset_tisr(); > + > + /* set shortest possible timeout. */ > + bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TCRR, UINT32_MAX); > + > + /* start timer, wait for writes to post. */ > + bus_space_write_4(gptimer_iot, gptimer_ioh0, GP_TCLR, GP_TCLR_ST); > + gptimer_wait(GP_TWPS_ALL); > + > + intr_restore(s); > +} > + > void > gptimer_delay(u_int usecs) > { > @@ -370,26 +327,7 @@ gptimer_delay(u_int usecs) > void > gptimer_setstatclockrate(int newhz) > { > - int minint, statint; > - int s; > - > - s = splclock(); > - > - statint = ticks_per_second / newhz; > - /* calculate largest 2^n which is smaller that just over half statint */ > - statvar = 0x40000000; /* really big power of two */ > - minint = statint / 2 + 100; > - while (statvar > minint) > - statvar >>= 1; > - > - statmin = statint - (statvar >> 1); > - > - splx(s); > - > - /* > - * XXX this allows the next stat timer to occur then it switches > - * to the new frequency. Rather than switching instantly. > - */ > + clockintr_setstatclockrate(newhz); > } > > >