Hi Anthony,

Anthony J. Bentley wrote on Sun, Sep 04, 2016 at 08:40:47PM -0600:

> eqnchar is a collection of eqn(7) definitions to create mathematical
> symbols by constructing them from other characters. Creating circled
> plus with O, a backspace, and a plus, for example. The results are
> quite ugly in both mandoc and groff if it even works at all.
> 
> Nothing in base (or even anywhere?) uses these weird macros. Anyone
> doing mathematical typesetting will be much better served by reading
> through mandoc_char(7) or the Unicode Mathematical Operators block.

Indeed, this is quite definitely junk.

> ok?

OK schwarze@
  Ingo


> Index: Makefile
> ===================================================================
> RCS file: /cvs/src/share/misc/Makefile,v
> retrieving revision 1.13
> diff -u -p -r1.13 Makefile
> --- Makefile  25 Aug 2014 14:29:49 -0000      1.13
> +++ Makefile  5 Sep 2016 02:15:15 -0000
> @@ -1,7 +1,7 @@
>  #    $OpenBSD: Makefile,v 1.13 2014/08/25 14:29:49 reyk Exp $
>  #    from: @(#)Makefile      5.13 (Berkeley) 5/7/91
>  
> -FILES=       airport ascii birthtoken countrycodes eqnchar getopt \
> +FILES=       airport ascii birthtoken countrycodes getopt \
>       inter.phone license.template mdoc.template mime.types \
>       na.phone operator scsi_modes usb_hid_usages usb_hid_usages \
>       zipcodes 
> Index: eqnchar
> ===================================================================
> RCS file: eqnchar
> diff -N eqnchar
> --- eqnchar   18 Oct 1995 08:44:44 -0000      1.1.1.1
> +++ /dev/null 1 Jan 1970 00:00:00 -0000
> @@ -1,90 +0,0 @@
> -.EQ
> -tdefine ciplus % "\o'\(pl\(ci'" %
> -ndefine ciplus % O+ %
> -tdefine citimes % "\o'\(mu\(ci'" %
> -ndefine citimes % Ox %
> -tdefine =wig % 
> "\(eq\h'-\w'\(eq'u-\w'\s-2\(ap'u/2u'\v'-.4m'\s-2\z\(ap\(ap\s+2\v'.4m'\h'\w'\(eq'u-\w'\s-2\(ap'u/2u'"
>  %
> -ndefine =wig % ="~" %
> -tdefine bigstar % "\o'\(pl\(mu'" %
> -ndefine bigstar % X|- %
> -tdefine =dot % "\z\(eq\v'-.6m'\h'.2m'\s+2.\s-2\v'.6m'\h'.1m'" %
> -ndefine =dot % = dot %
> -tdefine orsign % "\s-2\v'-.15m'\z\e\e\h'-.05m'\z\(sl\(sl\v'.15m'\s+2" %
> -ndefine orsign % \e/ %
> -tdefine andsign % "\s-2\v'-.15m'\z\(sl\(sl\h'-.05m'\z\e\e\v'.15m'\s+2" %
> -ndefine andsign % /\e %
> -tdefine =del % "\v'.3m'\z=\v'-.6m'\h'.3m'\s-1\(*D\s+1\v'.3m'" %
> -ndefine =del % = to DELTA %
> -tdefine oppA % 
> "\s-2\v'-.15m'\z\e\e\h'-.05m'\z\(sl\(sl\v'-.15m'\h'-.75m'\z-\z-\h'.2m'\z-\z-\v'.3m'\h'.4m'\s+2"
>  %
> -ndefine oppA % V- %
> -tdefine oppE 
> %"\s-3\v'.2m'\z\(em\v'-.5m'\z\(em\v'-.5m'\z\(em\v'.55m'\h'.9m'\z\(br\z\(br\v'.25m'\s+3"
>  %
> -ndefine oppE % E/ %
> -tdefine incl % 
> "\s-1\z\(or\h'-.1m'\v'-.45m'\z\(em\v'.7m'\z\(em\v'.2m'\(em\v'-.45m'\s+1" %
> -ndefine incl % C_ %
> -tdefine nomem % "\o'\(mo\(sl'" %
> -ndefine nomem % C-/ %
> -tdefine angstrom % "\fR\zA\v'-.3m'\h'.2m'\(de\v'.3m'\fP\h'.2m'" %
> -ndefine angstrom % A to o %
> -tdefine star %{ roman "\v'.5m'\s+3*\s-3\v'-.5m'"}%
> -ndefine star % * %
> -tdefine || % \(or\(or %
> -tdefine <wig % "\z<\v'.4m'\(ap\v'-.4m'" %
> -ndefine <wig %{ < from "~" }%
> -tdefine >wig % "\z>\v'.4m'\(ap\v'-.4m'" %
> -ndefine >wig %{ > from "~" }%
> -tdefine langle % "\s-3\b'\(sl\e'\s0" %
> -ndefine langle %<%
> -tdefine rangle % "\s-3\b'\e\(sl'\s0" %
> -ndefine rangle %>%
> -tdefine hbar % "\zh\v'-.6m'\h'.05m'\(ru\v'.6m'" %
> -ndefine hbar % h\u-\d %
> -ndefine ppd % _| %
> -tdefine ppd % "\o'\(ru\s-2\(or\s+2'" %
> -tdefine <-> % "\o'\(<-\(->'" %
> -ndefine <-> % "<-->" %
> -tdefine <=> % "\s-2\z<\v'.05m'\h'.2m'\z=\h'.55m'=\h'-.6m'\v'-.05m'>\s+2" %
> -ndefine <=> % "<=>" %
> -tdefine |< % "\o'<\(or'" %
> -ndefine |< % <| %
> -tdefine |> % "\o'>\(or'" %
> -ndefine |> % |> %
> -tdefine ang % "\v'-.15m'\z\s-2\(sl\s+2\v'.15m'\(ru" %
> -ndefine ang % /_ %
> -tdefine rang % "\z\(or\h'.15m'\(ru" %
> -ndefine rang % L %
> -tdefine 3dot % "\v'-.8m'\z.\v'.5m'\z.\v'.5m'.\v'-.2m'" %
> -ndefine 3dot % .\u.\u.\d\d %
> -tdefine thf % ".\v'-.5m'.\v'.5m'." %
> -ndefine thf % ..\u.\d %
> -tdefine quarter % roman \(14 %
> -ndefine quarter % 1/4 %
> -tdefine 3quarter % roman \(34 %
> -ndefine 3quarter % 3/4 %
> -tdefine degree % \(de %
> -ndefine degree % nothing sup o %
> -tdefine square % \(sq %
> -ndefine square % [] %
> -tdefine circle % \(ci %
> -ndefine circle % O %
> -tdefine blot % "\fB\(sq\fP" %
> -ndefine blot % HIX %
> -tdefine bullet % \(bu %
> -ndefine bullet % oxe %
> -tdefine -wig % "\(~=" %
> -ndefine -wig % - to "~" %
> -tdefine wig % \(ap %
> -ndefine wig % "~" %
> -tdefine prop % \(pt %
> -ndefine prop % oc %
> -tdefine empty % \(es %
> -ndefine empty % O/ %
> -tdefine member % \(mo %
> -ndefine member % C- %
> -tdefine cup % \(cu %
> -ndefine cup % U %
> -define cap % \(ca %
> -define subset % \(sb %
> -define supset % \(sp %
> -define !subset % \(ib %
> -define !supset % \(ip %
> -.EN

Reply via email to