OK great, so it's definitely not the main query (which is just a single term query in this example!)
> Also I have looked into the JSON Facet API. If I have to use facets, I will > have to then define 3600 facets in a single query and I guess that would be > also slow. You can ask for any number of stats for a given facet (even the root facet bucket w/o faceting on any fields): cutl 'http://localhost:8983/solr/collection1.query?q=variable1:290&rows=0&json.facet={ s1:"sum(metric_1)", s2:"sum(metric_2)", s3:"sum(metric_3)" }' -Yonik On Tue, Dec 12, 2017 at 5:40 AM, RAUNAK AGRAWAL <agrawal.rau...@gmail.com> wrote: > Hi Yonik, > > As you asked here is the code snippet and the actual solr query. Please > have a look. I have included only 104 metrics but like this we can go upto > 3600 rollups. > > Also I have looked into the JSON Facet API. If I have to use facets, I will > have to then define 3600 facets in a single query and I guess that would be > also slow. Also is there any max limit on the number of facets we can > define in a single query? > > Code snippet: > > private SolrQuery buildQuery(Integer variable1, List<String> metrics) { > SolrQuery query = new SolrQuery(); > query.set("q", "variable1:" + variable1); > query.setRows(0); > metrics.forEach( > metric -> query.setGetFieldStatistics("{!sum=true }" + metric) > ); > return query; > } > > > The generated query: > > {! q=variable1:290 rows=0 stats=true stats.field='{!sum=true > }metric_1' stats.field='{!sum=true }metric_2' stats.field='{!sum=true > }metric_3' stats.field='{!sum=true }metric_4' stats.field='{!sum=true > }metric_5' stats.field='{!sum=true }metric_6' stats.field='{!sum=true > }metric_7' stats.field='{!sum=true }metric_8' stats.field='{!sum=true > }metric_9' stats.field='{!sum=true }metric_10' stats.field='{!sum=true > }metric_11' stats.field='{!sum=true }metric_12' > stats.field='{!sum=true }metric_13' stats.field='{!sum=true > }metric_14' stats.field='{!sum=true }metric_15' > stats.field='{!sum=true }metric_16' stats.field='{!sum=true > }metric_17' stats.field='{!sum=true }metric_18' > stats.field='{!sum=true }metric_19' stats.field='{!sum=true > }metric_20' stats.field='{!sum=true }metric_21' > stats.field='{!sum=true }metric_22' stats.field='{!sum=true > }metric_23' stats.field='{!sum=true }metric_24' > stats.field='{!sum=true }metric_25' stats.field='{!sum=true > }metric_26' stats.field='{!sum=true }metric_27' > stats.field='{!sum=true }metric_28' stats.field='{!sum=true > }metric_29' stats.field='{!sum=true }metric_30' > stats.field='{!sum=true }metric_31' stats.field='{!sum=true > }metric_32' stats.field='{!sum=true }metric_33' > stats.field='{!sum=true }metric_34' stats.field='{!sum=true > }metric_35' stats.field='{!sum=true }metric_36' > stats.field='{!sum=true }metric_37' stats.field='{!sum=true > }metric_38' stats.field='{!sum=true }metric_39' > stats.field='{!sum=true }metric_40' stats.field='{!sum=true > }metric_41' stats.field='{!sum=true }metric_42' > stats.field='{!sum=true }metric_43' stats.field='{!sum=true > }metric_44' stats.field='{!sum=true }metric_45' > stats.field='{!sum=true }metric_46' stats.field='{!sum=true > }metric_47' stats.field='{!sum=true }metric_48' > stats.field='{!sum=true }metric_49' stats.field='{!sum=true > }metric_50' stats.field='{!sum=true }metric_51' > stats.field='{!sum=true }metric_52' stats.field='{!sum=true > }metric_53' stats.field='{!sum=true }metric_54' > stats.field='{!sum=true }metric_55' stats.field='{!sum=true > }metric_56' stats.field='{!sum=true }metric_57' > stats.field='{!sum=true }metric_58' stats.field='{!sum=true > }metric_59' stats.field='{!sum=true }metric_60' > stats.field='{!sum=true }metric_61' stats.field='{!sum=true > }metric_62' stats.field='{!sum=true }metric_63' > stats.field='{!sum=true }metric_64' stats.field='{!sum=true > }metric_65' stats.field='{!sum=true }metric_66' > stats.field='{!sum=true }metric_67' stats.field='{!sum=true > }metric_68' stats.field='{!sum=true }metric_69' > stats.field='{!sum=true }metric_70' stats.field='{!sum=true > }metric_71' stats.field='{!sum=true }metric_72' > stats.field='{!sum=true }metric_73' stats.field='{!sum=true > }metric_74' stats.field='{!sum=true }metric_75' > stats.field='{!sum=true }metric_76' stats.field='{!sum=true > }metric_77' stats.field='{!sum=true }metric_78' > stats.field='{!sum=true }metric_79' stats.field='{!sum=true > }metric_80' stats.field='{!sum=true }metric_81' > stats.field='{!sum=true }metric_82' stats.field='{!sum=true > }metric_83' stats.field='{!sum=true }metric_84' > stats.field='{!sum=true }metric_85' stats.field='{!sum=true > }metric_86' stats.field='{!sum=true }metric_87' > stats.field='{!sum=true }metric_88' stats.field='{!sum=true > }metric_89' stats.field='{!sum=true }metric_90' > stats.field='{!sum=true }metric_91' stats.field='{!sum=true > }metric_92' stats.field='{!sum=true }metric_93' > stats.field='{!sum=true }metric_94' stats.field='{!sum=true > }metric_95' stats.field='{!sum=true }metric_96' > stats.field='{!sum=true }metric_97' stats.field='{!sum=true > }metric_98' stats.field='{!sum=true }metric_99' > stats.field='{!sum=true }metric_100' stats.field='{!sum=true > }metric_101' stats.field='{!sum=true }metric_102' > stats.field='{!sum=true }metric_103' stats.field='{!sum=true > }metric_104'} > > > > > On Tue, Dec 12, 2017 at 10:21 AM, RAUNAK AGRAWAL <agrawal.rau...@gmail.com> > wrote: > >> Hi Yonik, >> >> I will try the JSON Facet API and update here but my hunch is that >> querying mechanism is not the problem. Rather the problem lies with the >> solr aggregations. >> >> Thanks >> >> On Tue, Dec 12, 2017 at 6:31 AM, Yonik Seeley <ysee...@gmail.com> wrote: >> >>> I think the SolrJ below uses the old stats component. >>> Hopefully the JSON Facet API would be faster for this, but it's not >>> completely clear what the main query here looks like, and if it's the >>> source of any bottleneck rather than the aggregations. >>> What does the generated query string actually look like (it may be >>> easiest just to pull this from the logs). >>> >>> -Yonik >>> >>> >>> On Mon, Dec 11, 2017 at 7:32 PM, RAUNAK AGRAWAL >>> <agrawal.rau...@gmail.com> wrote: >>> > Hi, >>> > >>> > We have a use case where there are 4-5 dimensions and around 3500 >>> metrics >>> > in a single document. We have indexed only 2 dimensions and made all the >>> > metrics as doc_values so that we can run the aggregation queries. >>> > >>> > We have 6 million such documents and we are using solr cloud(6.6) on a 6 >>> > node cluster with 8 Vcores and 24 GB RAM each. >>> > >>> > On the same set of hardware in elastic search we were getting the >>> response >>> > in about 10ms whereas in solr we are getting response in around 300-400 >>> ms. >>> > >>> > This is how I am querying the data. >>> > >>> > private SolrQuery buildQuery(Integer variable1, List<Integer> groups, >>> > List<String> metrics) { >>> > SolrQuery query = new SolrQuery(); >>> > String groupQuery = " (" + groups.stream().map(g -> "group:" + >>> g).collect >>> > (Collectors.joining(" OR ")) + ")"; >>> > String finalQuery = "variable1:" + variable1 + " AND " + groupQuery; >>> > query.set("q", finalQuery); >>> > query.setRows(0); >>> > metrics.forEach( >>> > metric -> query.setGetFieldStatistics("{!sum=true }" + >>> metric) >>> > ); >>> > return query; >>> > } >>> > >>> > Any help will be appreciated regarding this. >>> > >>> > >>> > Thanks, >>> > >>> > Raunak >>> >> >>