OK great, so it's definitely not the main query (which is just a
single term query in this example!)

> Also I have looked into the JSON Facet API. If I have to use facets, I will
> have to then define 3600 facets in a single query and I guess that would be
> also slow.

You can ask for any number of stats for a given facet (even the root
facet bucket w/o faceting on any fields):

cutl 
'http://localhost:8983/solr/collection1.query?q=variable1:290&rows=0&json.facet={
  s1:"sum(metric_1)",
  s2:"sum(metric_2)",
  s3:"sum(metric_3)"
}'

-Yonik


On Tue, Dec 12, 2017 at 5:40 AM, RAUNAK AGRAWAL
<agrawal.rau...@gmail.com> wrote:
> Hi Yonik,
>
> As you asked here is the code snippet and the actual solr query. Please
> have a look. I have included only 104 metrics but like this we can go upto
> 3600 rollups.
>
> Also I have looked into the JSON Facet API. If I have to use facets, I will
> have to then define 3600 facets in a single query and I guess that would be
> also slow. Also is there any max limit on the number of facets we can
> define in a single query?
>
> Code snippet:
>
> private SolrQuery buildQuery(Integer variable1, List<String> metrics) {
>     SolrQuery query = new SolrQuery();
>     query.set("q", "variable1:" + variable1);
>     query.setRows(0);
>     metrics.forEach(
>             metric -> query.setGetFieldStatistics("{!sum=true }" + metric)
>     );
>     return query;
> }
>
>
> The generated query:
>
> {! q=variable1:290 rows=0 stats=true stats.field='{!sum=true
> }metric_1' stats.field='{!sum=true }metric_2' stats.field='{!sum=true
> }metric_3' stats.field='{!sum=true }metric_4' stats.field='{!sum=true
> }metric_5' stats.field='{!sum=true }metric_6' stats.field='{!sum=true
> }metric_7' stats.field='{!sum=true }metric_8' stats.field='{!sum=true
> }metric_9' stats.field='{!sum=true }metric_10' stats.field='{!sum=true
> }metric_11' stats.field='{!sum=true }metric_12'
> stats.field='{!sum=true }metric_13' stats.field='{!sum=true
> }metric_14' stats.field='{!sum=true }metric_15'
> stats.field='{!sum=true }metric_16' stats.field='{!sum=true
> }metric_17' stats.field='{!sum=true }metric_18'
> stats.field='{!sum=true }metric_19' stats.field='{!sum=true
> }metric_20' stats.field='{!sum=true }metric_21'
> stats.field='{!sum=true }metric_22' stats.field='{!sum=true
> }metric_23' stats.field='{!sum=true }metric_24'
> stats.field='{!sum=true }metric_25' stats.field='{!sum=true
> }metric_26' stats.field='{!sum=true }metric_27'
> stats.field='{!sum=true }metric_28' stats.field='{!sum=true
> }metric_29' stats.field='{!sum=true }metric_30'
> stats.field='{!sum=true }metric_31' stats.field='{!sum=true
> }metric_32' stats.field='{!sum=true }metric_33'
> stats.field='{!sum=true }metric_34' stats.field='{!sum=true
> }metric_35' stats.field='{!sum=true }metric_36'
> stats.field='{!sum=true }metric_37' stats.field='{!sum=true
> }metric_38' stats.field='{!sum=true }metric_39'
> stats.field='{!sum=true }metric_40' stats.field='{!sum=true
> }metric_41' stats.field='{!sum=true }metric_42'
> stats.field='{!sum=true }metric_43' stats.field='{!sum=true
> }metric_44' stats.field='{!sum=true }metric_45'
> stats.field='{!sum=true }metric_46' stats.field='{!sum=true
> }metric_47' stats.field='{!sum=true }metric_48'
> stats.field='{!sum=true }metric_49' stats.field='{!sum=true
> }metric_50' stats.field='{!sum=true }metric_51'
> stats.field='{!sum=true }metric_52' stats.field='{!sum=true
> }metric_53' stats.field='{!sum=true }metric_54'
> stats.field='{!sum=true }metric_55' stats.field='{!sum=true
> }metric_56' stats.field='{!sum=true }metric_57'
> stats.field='{!sum=true }metric_58' stats.field='{!sum=true
> }metric_59' stats.field='{!sum=true }metric_60'
> stats.field='{!sum=true }metric_61' stats.field='{!sum=true
> }metric_62' stats.field='{!sum=true }metric_63'
> stats.field='{!sum=true }metric_64' stats.field='{!sum=true
> }metric_65' stats.field='{!sum=true }metric_66'
> stats.field='{!sum=true }metric_67' stats.field='{!sum=true
> }metric_68' stats.field='{!sum=true }metric_69'
> stats.field='{!sum=true }metric_70' stats.field='{!sum=true
> }metric_71' stats.field='{!sum=true }metric_72'
> stats.field='{!sum=true }metric_73' stats.field='{!sum=true
> }metric_74' stats.field='{!sum=true }metric_75'
> stats.field='{!sum=true }metric_76' stats.field='{!sum=true
> }metric_77' stats.field='{!sum=true }metric_78'
> stats.field='{!sum=true }metric_79' stats.field='{!sum=true
> }metric_80' stats.field='{!sum=true }metric_81'
> stats.field='{!sum=true }metric_82' stats.field='{!sum=true
> }metric_83' stats.field='{!sum=true }metric_84'
> stats.field='{!sum=true }metric_85' stats.field='{!sum=true
> }metric_86' stats.field='{!sum=true }metric_87'
> stats.field='{!sum=true }metric_88' stats.field='{!sum=true
> }metric_89' stats.field='{!sum=true }metric_90'
> stats.field='{!sum=true }metric_91' stats.field='{!sum=true
> }metric_92' stats.field='{!sum=true }metric_93'
> stats.field='{!sum=true }metric_94' stats.field='{!sum=true
> }metric_95' stats.field='{!sum=true }metric_96'
> stats.field='{!sum=true }metric_97' stats.field='{!sum=true
> }metric_98' stats.field='{!sum=true }metric_99'
> stats.field='{!sum=true }metric_100' stats.field='{!sum=true
> }metric_101' stats.field='{!sum=true }metric_102'
> stats.field='{!sum=true }metric_103' stats.field='{!sum=true
> }metric_104'}
>
>
>
>
> On Tue, Dec 12, 2017 at 10:21 AM, RAUNAK AGRAWAL <agrawal.rau...@gmail.com>
> wrote:
>
>> Hi Yonik,
>>
>> I will try the JSON Facet API and update here but my hunch is that
>> querying mechanism is not the problem. Rather the problem lies with the
>> solr aggregations.
>>
>> Thanks
>>
>> On Tue, Dec 12, 2017 at 6:31 AM, Yonik Seeley <ysee...@gmail.com> wrote:
>>
>>> I think the SolrJ below uses the old stats component.
>>> Hopefully the JSON Facet API would be faster for this, but it's not
>>> completely clear what the main query here looks like, and if it's the
>>> source of any bottleneck rather than the aggregations.
>>> What does the generated query string actually look like (it may be
>>> easiest just to pull this from the logs).
>>>
>>> -Yonik
>>>
>>>
>>> On Mon, Dec 11, 2017 at 7:32 PM, RAUNAK AGRAWAL
>>> <agrawal.rau...@gmail.com> wrote:
>>> > Hi,
>>> >
>>> > We have a use case where there are 4-5 dimensions and around 3500
>>> metrics
>>> > in a single document. We have indexed only 2 dimensions and made all the
>>> > metrics as doc_values so that we can run the aggregation queries.
>>> >
>>> > We have 6 million such documents and we are using solr cloud(6.6) on a 6
>>> > node cluster with 8 Vcores and 24 GB RAM each.
>>> >
>>> > On the same set of hardware in elastic search we were getting the
>>> response
>>> > in about 10ms whereas in solr we are getting response in around 300-400
>>> ms.
>>> >
>>> > This is how I am querying the data.
>>> >
>>> > private SolrQuery buildQuery(Integer variable1, List<Integer> groups,
>>> > List<String> metrics) {
>>> >     SolrQuery query = new SolrQuery();
>>> >     String groupQuery = " (" + groups.stream().map(g -> "group:" +
>>> g).collect
>>> >             (Collectors.joining(" OR ")) + ")";
>>> >     String finalQuery = "variable1:" + variable1 + " AND " + groupQuery;
>>> >     query.set("q", finalQuery);
>>> >     query.setRows(0);
>>> >     metrics.forEach(
>>> >             metric -> query.setGetFieldStatistics("{!sum=true }" +
>>> metric)
>>> >     );
>>> >     return query;
>>> > }
>>> >
>>> > Any help will be appreciated regarding this.
>>> >
>>> >
>>> > Thanks,
>>> >
>>> > Raunak
>>>
>>
>>

Reply via email to