Hi,

I've just changed the stemming algorithm slightly and am running a few tests against the old stemmer versus the new stemmer. I did a query for 'hanger' and using the old stemmer I get the following scoring for a document with the title: Converter Hanger Assembly Replacement

6.4242806 = (MATCH) sum of:
  2.5697122 = (MATCH) max of:
    0.2439919 = (MATCH) weight(markup_t:hanger in 3454), product of:
      0.1963516 = queryWeight(markup_t:hanger), product of:
        6.5593724 = idf(docFreq=6375, numDocs=1655591)
        0.02993451 = queryNorm
1.2426275 = (MATCH) fieldWeight(markup_t:hanger in 3454), product of:
        1.7320508 = tf(termFreq(markup_t:hanger)=3)
        6.5593724 = idf(docFreq=6375, numDocs=1655591)
        0.109375 = fieldNorm(field=markup_t, doc=3454)
    2.5697122 = (MATCH) weight(title_t:hanger^2.0 in 3454), product of:
      0.5547002 = queryWeight(title_t:hanger^2.0), product of:
        2.0 = boost
        9.265229 = idf(docFreq=425, numDocs=1655591)
        0.02993451 = queryNorm
4.6326146 = (MATCH) fieldWeight(title_t:hanger in 3454), product of:
        1.0 = tf(termFreq(title_t:hanger)=1)
        9.265229 = idf(docFreq=425, numDocs=1655591)
        0.5 = fieldNorm(field=title_t, doc=3454)
  3.8545685 = (MATCH) max of:
0.12199595 = (MATCH) weight(markup_t:hanger^0.5 in 3454), product of:
      0.0981758 = queryWeight(markup_t:hanger^0.5), product of:
        0.5 = boost
        6.5593724 = idf(docFreq=6375, numDocs=1655591)
        0.02993451 = queryNorm
1.2426275 = (MATCH) fieldWeight(markup_t:hanger in 3454), product of:
        1.7320508 = tf(termFreq(markup_t:hanger)=3)
        6.5593724 = idf(docFreq=6375, numDocs=1655591)
        0.109375 = fieldNorm(field=markup_t, doc=3454)
    3.8545685 = (MATCH) weight(title_t:hanger^3.0 in 3454), product of:
      0.8320503 = queryWeight(title_t:hanger^3.0), product of:
        3.0 = boost
        9.265229 = idf(docFreq=425, numDocs=1655591)
        0.02993451 = queryNorm
4.6326146 = (MATCH) fieldWeight(title_t:hanger in 3454), product of:
        1.0 = tf(termFreq(title_t:hanger)=1)
        9.265229 = idf(docFreq=425, numDocs=1655591)
        0.5 = fieldNorm(field=title_t, doc=3454)

Using the new stemmer I get:

5.621245 = (MATCH) sum of:
  2.248498 = (MATCH) max of:
    0.24399184 = (MATCH) weight(markup_t:hanger in 3454), product of:
      0.19635157 = queryWeight(markup_t:hanger), product of:
        6.559371 = idf(docFreq=6375, numDocs=1655589)
        0.029934512 = queryNorm
1.2426274 = (MATCH) fieldWeight(markup_t:hanger in 3454), product of:
        1.7320508 = tf(termFreq(markup_t:hanger)=3)
        6.559371 = idf(docFreq=6375, numDocs=1655589)
        0.109375 = fieldNorm(field=markup_t, doc=3454)
    2.248498 = (MATCH) weight(title_t:hanger^2.0 in 3454), product of:
      0.5547002 = queryWeight(title_t:hanger^2.0), product of:
        2.0 = boost
        9.265228 = idf(docFreq=425, numDocs=1655589)
        0.029934512 = queryNorm
4.0535374 = (MATCH) fieldWeight(title_t:hanger in 3454), product of:
        1.0 = tf(termFreq(title_t:hanger)=1)
        9.265228 = idf(docFreq=425, numDocs=1655589)
        0.4375 = fieldNorm(field=title_t, doc=3454)
  3.372747 = (MATCH) max of:
0.12199592 = (MATCH) weight(markup_t:hanger^0.5 in 3454), product of:
      0.09817579 = queryWeight(markup_t:hanger^0.5), product of:
        0.5 = boost
        6.559371 = idf(docFreq=6375, numDocs=1655589)
        0.029934512 = queryNorm
1.2426274 = (MATCH) fieldWeight(markup_t:hanger in 3454), product of:
        1.7320508 = tf(termFreq(markup_t:hanger)=3)
        6.559371 = idf(docFreq=6375, numDocs=1655589)
        0.109375 = fieldNorm(field=markup_t, doc=3454)
    3.372747 = (MATCH) weight(title_t:hanger^3.0 in 3454), product of:
      0.83205026 = queryWeight(title_t:hanger^3.0), product of:
        3.0 = boost
        9.265228 = idf(docFreq=425, numDocs=1655589)
        0.029934512 = queryNorm
4.0535374 = (MATCH) fieldWeight(title_t:hanger in 3454), product of:
        1.0 = tf(termFreq(title_t:hanger)=1)
        9.265228 = idf(docFreq=425, numDocs=1655589)
        0.4375 = fieldNorm(field=title_t, doc=3454)

The thing that is perplexing is that the fieldNorm for the title_t field is different in each of the explanations, ie: the fieldNorm using the old stemmer is: 0.5 = fieldNorm(field=title_t, doc=3454). For the new stemmer 0.4375 = fieldNorm(field=title_t, doc=3454). I ran the title through both stemmers and get the same number of tokens produced. I do no index time boosting on the title_t field. I am using DefaultSimilarity in both instances. So I figured the calculated fieldNorm would be:

field boost * lengthNorm = 1 * 1/sqrt(4) = 0.5

I wouldn't have thought that changing the stemmer would have any impact on the fieldNorm in this case. Any insight? Please kick me over to the lucene list if you feel this isn't appropriate here.

Regards
Brendan

Reply via email to