On Tue, Aug 24, 2010 at 11:25 AM, Martin Morgan wrote:
> On 08/24/2010 07:27 AM, Doran, Harold wrote:
>> There is the stringMatch function in the MiscPsycho package.
>>
>>> stringMatch('Hadley', 'Hadley Wickham', normalize = 'no')
>> [1] 8
>>> stringMatch('Hadley', 'Hadley Wickham', normalize = 'y
On 08/24/2010 07:27 AM, Doran, Harold wrote:
> There is the stringMatch function in the MiscPsycho package.
>
>> stringMatch('Hadley', 'Hadley Wickham', normalize = 'no')
> [1] 8
>> stringMatch('Hadley', 'Hadley Wickham', normalize = 'yes')
> [1] 0.4285714
>
> It uses Levenshtein distance to tel
There is the stringMatch function in the MiscPsycho package.
> stringMatch('Hadley', 'Hadley Wickham', normalize = 'no')
[1] 8
> stringMatch('Hadley', 'Hadley Wickham', normalize = 'yes')
[1] 0.4285714
It uses Levenshtein distance to tell you how much they differ by, either
normalized or not. S
On 24-Aug-10 14:16:55, Hadley Wickham wrote:
> Hi all,
> all.equal is generally very useful when you want to find the
> differences between two objects. It breaks down however,
> when you have two long strings to compare:
>
>> all.equal(a, b)
> [1] "1 string mismatch"
>
> Does any one know of an
4 matches
Mail list logo