hsl.gov.uk> writes:
[snip]
> Try:
> nrows <- 5
> mm <- matrix(rnorm(30),nrow=nrows)
> sd.by.col <- apply(mm,2,sd)
> mean.by.col <- apply(mm,2,mean)
> values <- 1-mapply(pnorm, q=as.vector(mm), mean=rep(mean.by.col,
> nrows)), sd=rep(sd.by.col, nrows))) values <- matrix(value
hsl.gov.uk> writes:
[snip]
> Try:
> nrows <- 5
> mm <- matrix(rnorm(30),nrow=nrows)
> sd.by.col <- apply(mm,2,sd)
> mean.by.col <- apply(mm,2,mean)
> values <- 1-mapply(pnorm, q=as.vector(mm), mean=rep(mean.by.col, nrows)),
> sd=rep(sd.by.col, nrows)))
> values <- matrix(values, nrow=5)
>
>
This is a bit ugly but I think it works.
myf <- function(x) 1-pnorm(x,mean(x), sd(x))
results <- apply(test, 2, myf)
mymeans <- apply(test, 2, mean); mymeans
for (i in 1:length(test)){
test[,i][test[,1]>=mymeans[i]] <- NA
}
results[is.na(tes
> I've read in a csv file (test.csv) which gives me the following table:
>
>Hin1 Hin2 Hin3Hin4 Hin5 Hin6
> HAI1 9534.83 4001.74 157.16 3736.93 484.60 59.25
> HAI2 13272.48 1519.88 36.35 33.64 46.68 82.11
> HAI3 12587.71 5686.94 656.62 572.29 351.60 136.91
> H
4 matches
Mail list logo