No, it is not a homework..
The 3 paramters I want to estimate it are : alpha,gam and delta, the range of
them >0
here my code:
library("MHadaptive")
baysianlog5=function
(param,data)
{
alpha=param[1]
gam=param[2]
delta=param[3]
x=data
gt;>
>>
>> return(prior_alpha+ prior_gam +prior_delta)
>>
>>
>> }
>>
>>
>> alphaB5=c();gamB5=c();deltaB5=c()
>>
>>
>> n=5 ; m=5
>>
>>
>> alpha=2;gam=3;delta=4 #initial values
>>
>>
>> v=
>
>
> mc5 =Metro_Hastings(li_func=baysianlog5,
> pars=c(.8,.2,.2),par_names=c('alpha','gamma','delta'),data=x )
>
>
>
>
>
>
> #the output is
> Error in optim(pars, li_func, control = list(fnscale = -1), hessian = TRUE,
> :
>
Heh, heh ...
Uniform distributions are not necessarily "non-informative" priors
(itself, a non-definition). See, e.g.
http://www.stats.org.uk/priors/noninformative/YangBerger1998.pdf .
For a basic argument, see:
http://www.amstat.org/publications/jse/v12n2/zhu.pdf
Further discussion is off-topi
Hello,
I estimated three paramters using non informative prior(all paramters following
uniform distribution)
the output is:
Error in optim(pars, li_func, control = list(fnscale = -1), hessian = TRUE, :
non-finite finite-difference value [1]
How can I solve it using uniform distribution for
5 matches
Mail list logo