You can also use 'dplyr'
library(tidyverse)
result <- pcr %>%
group_by(Gene, Type, Rep) %>%
summarise(mean = mean(Ct),
sd = sd(Ct),
oth = sd(Ct) / sqrt(sd(Ct))
)
Jim Holtman
*Data Munger Guru*
*What is the problem that you are trying to solve?Tell me
Hi Cyrus,
Try this:
pcr<-data.frame(Ct=runif(66,10,20),Gene=rep(LETTERS[1:22],3),
Type=rep(c("Std","Unkn"),33),Rep=rep(1:3,each=22))
testagg<-aggregate(pcr$Ct,c(pcr["Gene"],pcr["Type"],pcr["Rep"]),
FUN=function(x){c(mean(x), sd(x), sd(x)/sqrt(sd(x)))})
nxcol<-dim(testagg$x)[2]
newxs<-paste("x",1
Dear users,
i am trying to summarize data using "aggregate" with the following command:
aggregate(pcr$Ct,c(pcr["Gene"],pcr["Type"],pcr["Rep"]),FUN=function(x){c(mean(x),
sd(x), sd(x)/sqrt(sd(x)))})
and the structure of the resulting data frame is
'data.frame':66 obs. of 4 variables:
$ Gen
3 matches
Mail list logo