Well, this mailing list is about the R language itself, not specific packages
or background theory. You may get an answer anyway, but you are likely to have
better responses on the R-sig-geo mailing list or contacting the author of the
contributed package you are using.
Also, do figure out how
Dear
I am Bibi, a PhD student of Environmental Science in South Korea. I am
currently writing my research paper and to deal with data I need to do Self
Organizing Map (SOM).
I am using R version 4.1.0 (2021-05-18) with kohonen package.
I was following this tutorial given
http://rstudio-pubs-sta
> Cheers
> Petr
>
>
> > -Original Message-
> > From: R-help [mailto:r-help-boun...@r-project.org] On Behalf Of
> > Clarkson, Christopher
> > Sent: Friday, November 13, 2015 12:07 AM
> > To: r-help@R-project.org
> > Subject: [R] student looking
> From: R-help [mailto:r-help-boun...@r-project.org] On Behalf Of
> Clarkson, Christopher
> Sent: Friday, November 13, 2015 12:07 AM
> To: r-help@R-project.org
> Subject: [R] student looking for help with assignment in R
>
> Hello,
>
> I am a student and I only have basic knowl
Hello,
I am a student and I only have basic knowledge of R. I have been given the task
of having to monitor cells' migration in 2 dimensions. I have been given 2
files one containing the the X-coordinates and the other contains the
Y-coordinates of the cells. There are 50 cells and there moveme
allvals <- rt(1000,df=11)
## 1000 samples is overkill: slightly more than
##500*(1.05) should be large enough
subvals <- (allvals[abs(allvals)
Thank you very much bbolker. It works very well!
Best regards
Thomas
--
View this message in context:
http://r.789695.n4.nabble.com/Student-t-
Thomas Schu gmx.de> writes:
> I´m faced with following problem:
> Given is a sample where the sample size is 12, the sample mean is 30, and
> standard deviation is 4.1.
> Based on a Student-t distribution i´d like to simulate randomly 500 possible
> mean values within a two-tailed 95% confidence
Dear R-users!
I´m faced with following problem:
Given is a sample where the sample size is 12, the sample mean is 30, and
standard deviation is 4.1.
Based on a Student-t distribution i´d like to simulate randomly 500 possible
mean values within a two-tailed 95% confidence interval.
Calculation of
On Wed, Apr 08, 2009 at 10:02:10AM +0200, alberto cassese wrote:
> Hi,
> I have problem. In the function below (test and test2) i want the function
> test not to print the variable data but i want the function test2 to use the
> variable test$data.
>
> This is the creation of the variable data:
>
Hi,
I have problem. In the function below (test and test2) i want the function
test not to print the variable data but i want the function test2 to use the
variable test$data.
This is the creation of the variable data:
> matrice=c(1:10)
> matrice=matrix(matrice,nrow=5,ncol=2)
This is the functi
On 09-Jun-08 13:14:02, "Antje Schafföner" wrote:
> Hello,
> I am trying to calculate and plot mean and confidence intervall for a
> set of data. This is the code that I am currently using:
>
>
> means <- sapply(data, mean, na.rm=TRUE)
> n <- sapply(data,length)
> stdev <- sqrt(sapply(data, v
Hello,
I am trying to calculate and plot mean and confidence intervall for a set of
data. This is the code that I am currently using:
means <- sapply(data, mean, na.rm=TRUE)
n <- sapply(data,length)
stdev <- sqrt(sapply(data, var, na.rm=TRUE))
ciw <- qt(0.98, n) * stdev / sqrt(n)
par(mgp=
12 matches
Mail list logo