clustering
method that preserves all the points?
Thanks in advance
Paco
--
_
El ponent la mou, el llevant la plou
Usuari Linux registrat: 363952
---
Fotos: http://picasaweb.google.es/pacomet
[[alternative HTML version deleted
ly finding the right number of clusters is a difficult problem and
> depends heavily on the cluster concept needed for the particular
> application.
> No outcome of any automatic mathod should be taken for granted.
>
> Having said that, I guess that something like the example gi
, el llevant la plou
Usuari Linux registrat: 363952
---
Fotos: http://picasaweb.google.es/pacomet
[[alternative HTML version deleted]]
__
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the pos
us.avg.widths: num [1:8] 0.343 0.355 0.533 0.265 0.308 ...
..$ avg.width : num 0.362
$ data : num [1:75459, 1:14] 8.68 8.72 8.77 8.81 8.86 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:75459] "12296" "12297" "12298" "12299" .
ppend=TRUE)
Variable data is properly exported but clustering is not appended to the
output file.
Please, where is the mistake? is it possible to export the two variables in
just a sentence?
thanks in advance
Paco
--
_
El pone
or pamk that I've read it gives the optimal number of clusters.
Thanks again
--
_
El ponent la mou, el llevant la plou
Usuari Linux registrat: 363952
---
Fotos: http://picasaweb.google.es/pacomet
[[alternative HTML version deleted]]
__
nks in advance
Paco
--
_
El ponent la mou, el llevant la plou
Usuari Linux registrat: 363952
---
Fotos: http://picasaweb.google.es/pacomet
[[alternative HTML version deleted]]
__
R-help@r-project.org mailing list
https://
7 matches
Mail list logo