Hi,
sorry, I was a bit confused and my function looked slightly different
from the one I posted before:
Susanne Pfeifer schrieb:
>>> integrate(function(y,z){
>> + sapply(y, function(y,z){
>> + integrate(function(x,z)
>> +
>> 1/x*dbeta(0.01,x/(0.005/1.
Hi Charles,
hi Victor
Charles C. Berry schrieb:
> What verson of R?
>
> Works for me:
>
>> integrate(function(y,z){
> + sapply(y, function(y,z){
> + integrate(function(x,z)
> +
> 1/x*dbeta(0.01,x/(0.005/1.005),(1-x)/(0.005/1.005))*dbeta(y,x/(0.005/1.005),(1-x)/(0.005/1.005))*(1-y)^z,
Hello,
I am trying to use R's integrate function to calculate the following
integral for z=423:
integrate(function(y,z){
sapply(y, function(y,z){
integrate(function(x,z)
1/x*dbeta(0.01,x/(0.005/1.005),(1-x)/(0.005/1.005))*dbeta(y,x/(0.005/1.005),(1-x)/(0.005/1.005))*(1-y)^z,0,1,423)$value
})
},0,
Hello,
I am trying to use R's integrate function to calculate the following
integral for z=423:
integrate(function(y,z){
sapply(y, function(y,z){
integrate(function(x,z)
1/x*dbeta(0.01,x/(0.005/1.005),(1-x)/(0.005/1.005))*dbeta(y,x/(0.005/1.005),(1-x)/(0.005/1.005))*(1-y)^z,0,1,423)$value
})
},0,
Hi,
I would like to solve a double integral of the form
\int_0^1 \int_0^1 x*y dx dy
using Gauss Quadrature.
I know that I can use R's integrate function to calculate it:
integrate(function(y) {
sapply(y, function(y) {
integrate(function(x) x*y, 0, 1)$value
})
}, 0, 1)
but I would like to use
Hi,
I would like to solve a double integral of the form
\int_0^1 \int_0^1 x*y dx dy
using Gauss Quadrature.
I know that I can use R's integrate function to calculate it:
integrate(function(y) {
sapply(y, function(y) {
integrate(function(x) x*y, 0, 1)$value
})
}, 0, 1)
but I would like to use
6 matches
Mail list logo