lt;- split(WW_Wing_SI, WW_Wing_SI$Individual_ID)
# apply cor.test() with extract to each element of the list
test <- as.data.frame(t(sapply(wing.list, function(temp)
cor.test(temp$Delta13C, temp$FeatherPosition,
method="pe
<- WW_Wing_SI_Spring[ which(WW_Wing_SI_Spring$Individual_ID ==
WW_Wing_Individuals[1]), ]
## Create temp2 dateset with results of pearsons product-moment
correlation (for the first individual)
temp2 <- cor.test(temp$Delta13C, temp$FeatherPosition, method="pearson")
Many Cheers,
Keith
*
-21.08, -21.5, -17.42, -13.18, -22.3, -22.2,
-22.18, -22.14, -21.55, -20.85, -23.1, -20.75, -20.9)), .Names =
c("Individual_ID",
"FeatherPosition", "Delta13C"), class = "data.frame", row.names = c("1",
"2", "3", "4", "5", &quo
;, "P8", "P9"), class = "factor"), Delta13C = c(-18.3,
-18.53, -19.55, -20.18, -20.96, -21.08, -21.5, -17.42, -13.18,
-19.95, -22.3, -22.2, -22.18, -22.14, -21.55, -20.85, -23.1,
-20.75, -20.9, -21.61, -22.24)), .Names = c("Individual_ID",
"Site_Na
4 matches
Mail list logo