Re: [Numpy-discussion] confused about tensordot

2013-02-15 Thread Bradley M. Froehle
> > >> It's supposed to take 2 matrixes, each (1004, 13) and do element-wise > >> multiply, > >> then sum over axis 0. > >> > > Can I use tensordot to do what I want? No. In your case I'd just do (a*b.conj()).sum(0). (Assuming that a and b are arrays, not matrices). It is most helpful to think

Re: [Numpy-discussion] confused about tensordot

2013-02-15 Thread Neal Becker
Bradley M. Froehle wrote: > Hi Neal: > > The tensordot part: > np.tensordot (a, b.conj(), ((0,),(0,)) > > is returning a (13, 13) array whose [i, j]-th entry is sum( a[k, i] * > b.conj()[k, j] for k in xrange(1004) ). > > -Brad > > > The print statement outputs this: >> >> (1004, 13) (100

Re: [Numpy-discussion] confused about tensordot

2013-02-15 Thread Bradley M. Froehle
Hi Neal: The tensordot part: np.tensordot (a, b.conj(), ((0,),(0,)) is returning a (13, 13) array whose [i, j]-th entry is sum( a[k, i] * b.conj()[k, j] for k in xrange(1004) ). -Brad The print statement outputs this: > > (1004, 13) (1004, 13) (13,) (13, 13) > > The correct output should b

[Numpy-discussion] confused about tensordot

2013-02-15 Thread Neal Becker
In the following code c = np.multiply (a, b.conj()) d = np.abs (np.sum (c, axis=0)/rows) d2 = np.abs (np.tensordot (a, b.conj(), ((0,),(0,)))/rows) print a.shape, b.shape, d.shape, d2.shape The 1st compute steps, where I do multiply and then sum g