Re: [Numpy-discussion] Memory leak found in ndarray (I think)?

2010-07-12 Thread Nathaniel Peterson
Wes McKinney writes: > Did you mean to post a different link? That's the ticket I just created :) How silly of me! I meant http://projects.scipy.org/numpy/ticket/1427 ___ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/ma

Re: [Numpy-discussion] Memory leak found in ndarray (I think)?

2010-07-12 Thread Nathaniel Peterson
This memory leak may be related: http://projects.scipy.org/numpy/ticket/1542 It shows what appears to be a memory leak when calling astype('float') on an array of dtype 'object'. ___ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.sci

Re: [Numpy-discussion] Possible bug in indexed masked arrays

2010-04-05 Thread Nathaniel Peterson
Pierre, Thank you for the wonderful explanation. I get it! np.alltrue(idx.data == idx2.data) is False. PS. Thank you for closing ticket #1447; sorry for the trouble. ___ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mail

[Numpy-discussion] Possible bug in indexed masked arrays

2010-04-01 Thread Nathaniel Peterson
Is this behavior of masked arrays intended, or is it a bug? This part works as I would expected: import numpy as np a=np.ma.fix_invalid(np.array([np.nan,-1,0,1])) b=np.ma.fix_invalid(np.array([np.nan,-1,0,1])) idx=(a==b) print(a[idx][3]) # 1.0 Note that a[idx] has shape (4,). But if I change t

Re: [Numpy-discussion] Can numpy catch this error for me?

2009-04-07 Thread Nathaniel Peterson
Okay; thank you very much for the explanation. ___ Numpy-discussion mailing list Numpy-discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion

Re: [Numpy-discussion] Can numpy catch this error for me?

2009-04-07 Thread Nathaniel Peterson
Thanks for the quick response. In http://www.scipy.org/Cookbook/Indexing I see >>> a = C[1,2,3] >>> a 23 >>> type(a) >>> type(int(a)) >>> a**a Warning: overflow encountered in long_scalars -1276351769 >>> int(a)**int(a) 20880467999847912034355032910567L This shows numpy can catch an overflow ge

[Numpy-discussion] Can numpy catch this error for me?

2009-04-07 Thread Nathaniel Peterson
import numpy as np import operator np.seterr(all='raise') a=np.arange(1)+1 print(a.dtype) # int32 for num in range(1,17): a=np.arange(num)+1 b=np.multiply.reduce(a) print('%s! = %s'%(num,b)) # c=reduce(operator.mul,range(1,num+1)) # assert(b==c) The code above outputs int32 1!