gvalsh( np.array(
[ [ S[0], S[3], S[5]],
[ S[3], S[1], S[4]],
[ S[5], S[4], S[2]],
]))
return p_stresses.sort()
p_stresses = array([ calc_principal_stresses(s) for s in S])
Aside putting the sort function outside the loop, is there any way to
optimize or vectori
t; python2.5 -c 'import numpy; print numpy.__version__; import
> numpy.core.multiarray; print "no pb"'
1.2.0b2
no pb
Have you got any recipe to freeze numpy based script ?
Regards,
--
LB
___
Numpy-discussion mailing list
Numpy-discussion@scipy.org
http://projects.scipy.org/mailman/listinfo/numpy-discussion
very fast and labels like "array
creation", "shape manipulation","index operation",
"arithmetic", ...etc, could simplify this kind of search.
--
LB
___
Numpy-discussion mailing list
Numpy-discussion@scipy.or
f2py -c -m hastings hastings.f90 --fcompiler=gnu95
-
configuration-----
I'm using debian testing, and I got the following information at the
bottom of `f2py -h` :
Version: 2_4422
numpy Version: 1.0.4
Requires:Python 2.3 or higher.
License: NumPy license (see LICENSE.txt in the NumPy source code)
Have you got any clue to solve this pb ?
--
LB
___
Numpy-discussion mailing list
Numpy-discussion@scipy.org
http://projects.scipy.org/mailman/listinfo/numpy-discussion
e=> values outside of this range are allocated to
the closest bin
For the default behavior, most of the case, the sum of the bins 's
population should be equal to the size of the original one for me, so
I would prefer discard=None. But I'm also okay with
scipy-user/browse_thread/thread/47fefa8e519c85f6?hl=fr).
Did I miss something or should I add an entry to the bugtracker ?
--
LB
___
Numpy-discussion mailing list
Numpy-discussion@scipy.org
http://projects.scipy.org/mailman/listinfo/numpy-discussion
orks
ii python-numpy 1:1.0.4-5Numerical
Python adds a fast array facility to the Python language
ii python-scipy 0.6.0-5.1scientific
tools for Python
un python-soappy (aucune
description n'est disponible)
--
LB
_
Thank you Gael, I think this could work for my case.
It will be a bit tricky, since calc_0d is already a closure in which
I've defined a function : the parameters x and y are to main
parameters of an ODE.
So calc_0d define a function, integrate it sing scipy.integrate.odeint
and returns some chara
arameters and only the x
and y arguments should be interpreted with the broadcasting rules
What is the "good way" for doing this ?
Regards,
--
LB
___
Numpy-discussion mailing list
Numpy-discussion@scipy.org
http://projects.scipy.org/mailman/listinfo/numpy-discussion
If you just want to add your matrix to an existing ascii file, you can
open this file in append mode and give the file handle to
numpy.savetxt :
f_handle = file('my_file.dat', 'a')
savetxt(f_handle, my_matrix)
f_handle.close()
HTH
--
LB
_
...
>>>
>>> interp(x, xp, yp)
7.7011
>>> interp([x,2*x], xp, yp)
array([ 7.7, 38.5])
--
LB
___
Numpy-discussion mailing list
Numpy-discussion@scipy.org
http://projects.scipy.org/mailman/listinfo/numpy-discussion
11 matches
Mail list logo