> Here is their lame excuse:
>
> https://sourceforge.net/blog/gimp-win-project-wasnt-hijacked-just-abandoned/
>
> It probably means this:
>
> If NumPy installers are moved away from Sourceforge, they will set up a
> mirror and load the mirrored installers with all sorts of crapware. It is
> some so
> Congrats! Also btw, you might want to switch to a new subject line format
> for these emails -- the mention of Python 2.5 getting hdf5 support made me
> do a serious double take before I figured out what was going on, and 2.6 and
> 2.7 will be even worse :-)
Ha! Didn't even think of that. For
Announcing HDF5 for Python (h5py) 2.5.0
The h5py team is happy to announce the availability of h5py 2.5.0.
This release introduces experimental support for the highly-anticipated
"Single Writer Multiple Reader" (SWMR) feature in the upcoming HDF5 1.10
rele
PI use any proprietary
code? We'd like to avoid building NumPy ourselves if we can avoid it.
Apologies if this is explained somewhere, but I couldn't find it.
Thanks!
Andrew Collette
___
NumPy-Discussion mailing list
NumPy-Discussion@scipy.org
http://ma
Hi Chris,
> Actually, I agree about the truncation issue, but it's a question of where
> to put it -- I'm suggesting that I don't want it at the python<->numpy
> interface.
Yes, that's a good point. Of course, by using Latin-1 rather than
UTF-8 we can't support all Unicode code points (hence the
Hi Chris,
> What it would do is push the problem from the HDF5<->numpy interface to the
> python<->numpy interface.
>
> I'm not sure that's a good trade off.
Maybe I'm being too paranoid about the truncation issue. We already
perform truncation when going from e.g. vlen to fixed-width strings in
Hi Chris,
> Again, they shouldn't do that, they should be pushing a 10-character string
> into something -- and utf-8 is going to (Possible) truncate that. That's
> HDF/utf-8 limitation that people are going to have to deal with. I think
> you're suggesting that numpy follow the HDF model, so that
Hi Chris,
>> A Latin-1 based 'a' type
>> would have similar problems.
>
> Maybe not -- latin1 is fixed width.
Yes, Latin-1 is fixed width, but the issue is that when writing to a
fixed-width UTF8 string in HDF5, it will expand, possibly losing data.
What I would like to avoid is a situation wher
Hi,
> good argument for ASCII, but utf-8 is a bad idea, as there is no 1:1
correspondence between length of string in bytes and length in characters
-- as numpy needs to pre-allocate a defined number of bytes for a dtype,
there is a disconnect between the user and numpy as to how long a string is
Hi Chuck,
> This note proposes to adapt the currently existing 'a'
> type letter, currently aliased to 'S', as a new fixed encoding dtype. Python
> 3.3 introduced two one byte internal representations for unicode strings,
> ascii and latin1. Ascii has the advantage that it is a subset of UTF-8,
>
Hi,
> Good work!
> Small question : do you now have the interface to set alignment?
Unfortunately this didn't make it in to 2.3. Pull requests are
welcome for this and other MPI features!
Andrew
___
NumPy-Discussion mailing list
NumPy-Discussion@scipy
Announcing HDF5 for Python (h5py) 2.3.0
===
The h5py team is happy to announce the availability of h5py 2.3.0 (final).
Thanks to everyone who provided beta feedback!
What's h5py?
The h5py package is a Pythonic interface to the HDF5 binary data for
Announcing HDF5 for Python (h5py) 2.3.0 BETA
The h5py team is happy to announce the availability of h5py 2.3.0 beta. This
beta release will be available for approximately two weeks.
What's h5py?
The h5py package is a Pythonic interface to
Hi Oscar,
> Is it fair to say that people should really be using vlen utf-8 strings for
> text? Is it problematic because of the need to interface with non-Python
> libraries using the same hdf5 file?
The general recommendation has been to use fixed-width strings for
exactly that reason; FORTRAN
Hi Chris,
> it looks from here:
> http://www.hdfgroup.org/HDF5/doc/ADGuide/WhatsNew180.html
>
> that HDF uses utf-8 for unicode strings -- so you _could_ roundtrip with a
> lot of calls to encode/decode -- which could be pretty slow, compared to
> other ways to dump numpy arrays into HDF-5 -- that
Hi Chris,
Just stumbled on this discussion (I'm the lead author of h5py).
We would be overjoyed if there were a 1-byte text type available in
NumPy. String handling is the source of major pain right now in the
HDF5 world. All HDF5 strings are text (opaque types are used for
binary data), but we
Announcing HDF5 for Python (h5py) 2.2.1
===
The h5py team is happy, in a sense, to announce the availability of h5py 2.2.1.
This release fixes a critical bug reported by Jim Parker on December 7th, which
affects code using HDF5 compound types.
We recommend that
t.metadata
However, I can't find documentation on it anywhere; the "metadata"
keyword doesn't even appear in the dtype docstring. Is this an
officially supported feature in NumPy? I am mostly concerned about it
going away in a future release.
Thanks!
Andrew Collette
Announcing HDF5 for Python (h5py) 2.2.0
===
We are proud to announce that HDF5 for Python 2.2.0 is now available.
Thanks to everyone who helped put together this release!
The h5py package is a Pythonic interface to the HDF5 binary data format.
It lets you stor
Announcing HDF5 for Python (h5py) 2.2.0 BETA
We are proud to announce that HDF5 for Python 2.2.0 (beta) is now available.
Because of the large number of new features in this release, we are actively
seeking community feedback over the (2-week) beta peri
Hi Richard,
> I'm in the process of defining some new dtypes to handle non-physical
> calendars (such as the 360-day calendar used in the climate modelling
> world). This is all going fine[*] so far, but I'd like to know a little bit
> more about how much is ultimately possible.
>
> The PyArray_De
>> 5. Currently dtypes are limited to a set of fixed types, or combinations
>> of these types. You can't have, say, a 48 bit float or a 1-bit bool. This
>> project would be to allow users to create entirely new, non-standard dtypes
>> based on simple rules, such as specifying the length of the si
Hi Nathaniel,
> Sure. But the only reason this is in 1.6 is that the person who made
> the change never mentioned it to anyone else, so it wasn't noticed
> until after 1.6 came out. If it had gone through proper review/mailing
> list discussion (like we're doing now) then it's very unlikely it
> w
Hi Olivier,
>> Yes, certainly. But in either the proposed or 1.5 behavior, if the
>> values in x are close to the limits of the type, this can happen also.
>
>
> My previous email may not have been clear enough, so to be sure: in my above
> example, if the random number is 3, then the result
Hi,
> Keep in mind that in the third option (current 1.6 behavior) the dtype is
> large enough to hold the random number, but not necessarily to hold the
> result. So for instance if x is an int16 array with only positive values,
> the result of this addition may contain negative values (or not, d
Hi Dag,
> So you are saying that, for an array x, you want
>
> x + random.randint(10)
>
> to produce an array with a random dtype?
Under the proposed behavior, depending on the dtype of x and the value
from random, this would sometimes add-with-rollover and sometimes
raise ValueError.
Under
Hi Nathaniel,
(Responding to both your emails)
> The problem is that rule for arrays - and for every other party of
> numpy in general - are that we *don't* pick types based on values.
> Numpy always uses input types to determine output types, not input
> values.
Yes, of course... array operatio
Hi,
> I think you are voting strongly for the current casting rules, because
> they make it less obvious to the user that scalars are different from
> arrays.
Maybe this is the source of my confusion... why should scalars be
different from arrays? They should follow the same rules, as closely
as
Hi,
> Taking 2) first, in this example:
>
>> return self.f[dataset_name][...] + heightmap
>
> assuming it is not going to upcast, would you rather it overflow than
> raise an error? Why? The second seems more explicit and sensible to
> me.
Yes, I think this (the 1.5 overflow behavior) was a
Hi Matthew,
> Ah - well - I only meant that raising an error in the example would be
> no more surprising than raising an error at the python prompt. Do you
> agree with that? I mean, if the user knew that:
>
np.array([1], dtype=np.int8) + 128
>
> would raise an error, they'd probably expec
Hi Dag,
> But the default float dtype is double, and default integer dtype is at
> least
> int32.
>
> So if you rely on NumPy-supplied default behaviour you are fine!
As I mentioned, this caught my interest because people routinely save
data in HDF5 as int8 or int16 to save disk space. It's not
Hi Matthew,
> In this case I think you'd probably agree it would be reasonable to
> raise an error - all other things being equal?
No, I don't agree. I want there to be some default semantics I can
rely on. Preferably, I want it to do the same thing it would do if
some_offset were an array with
Hi Matthew,
> Just to be clear, you mean you might have something like this?
>
> def my_func('array_name', some_offset):
> arr = load_somehow('array_name') # dtype hitherto unknown
> return arr + some_offset
>
> ? And the problem is that it fails late? Is it really better that
> somethi
Hi Matthew,
> I realized when I thought about it, that I did not have a clear idea
> of your exact use case. How does the user specify the thing to add,
> and why do you need to avoid an error in the case that adding would
> overflow the type? Would you mind giving an idiot-level explanation?
T
Hi,
> In fact in 1.6 there is no assignment of a dtype to '1' which makes
> the way 1.6 handles it consistent with the array rules:
I guess I'm a little out of my depth here... what are the array rules?
> # Ah-hah, it looks like '1' has a uint8 dtype:
> (np.ones(2, dtype=np.uint8) / np.ones(
Hi,
> (sorry, no time for full reply, so for now just answering what I
> believe is the main point)
Thanks for taking the time to discuss/explain this at all... I appreciate it.
> The evilness lies in the silent switch between the rollover and upcast
> behavior, as in the example I gave previous
Hi Olivier,
> A key difference is that with arrays, the dtype is not chosen "just
> big enough" for your data to fit. Either you set the dtype yourself,
> or you're using the default inferred dtype (int/float). In both cases
> you should know what to expect, and it doesn't depend on the actual
> n
Hi Olivier,
> Another solution is to forget about trying to be smart and always
> upcast the operation. That would be my 2nd preferred solution, but it
> would make it very annoying to deal with Python scalars (typically
> int64 / float64) that would be upcasting lots of things, potentially
> brea
Hi Dag,
> If neither is objectively better, I think that is a very good reason to
> kick it down to the user. "Explicit is better than implicit".
I agree with you, up to a point. However, we are talking about an
extremely common operation that I think most people (myself included)
would not expe
> Consensus in that bug report seems to be that for array/scalar operations
> like:
> np.array([1], dtype=np.int8) + 1000 # can't be represented as an int8!
> we should raise an error, rather than either silently upcasting the
> result (as in 1.6 and 1.7) or silently downcasting the scalar (as i
other parts of the
project. If I can be of any help just let me know how.
Andrew Collette
___
NumPy-Discussion mailing list
NumPy-Discussion@scipy.org
http://mail.scipy.org/mailman/listinfo/numpy-discussion
lf. Worse, our fix for this behavior (remove the
field when returning data from h5py) triggered the above bug in NumPy.
Is there a better way to add metadata to dtypes I'm not aware of?
Note I'm *not* interested in creating a custom type; one of the
advantages of the current system i
Hi,
> the following code using np.object_ data types works with numpy 1.5.1
> but fails with 1.6.2. Is this intended or a regression? Other data
> types, np.float64 for example, seem to work.
I am also seeing this problem; there was a change to how string types
are handled in h5py 2.1.0 which tri
Announcing HDF5 for Python (h5py) 2.1.0
===
We are proud to announce the availability of HDF5 for Python (h5py)
2.1.0! This release has been a long time coming. Thanks to everyone
who contributed code and filed bug reports!
What's new in h5py 2.1
Announcing HDF5 for Python (h5py) 1.2
=
I'm pleased to announce the availability of HDF5 for Python 1.2 final!
This release represents a significant update to the h5py feature set.
Some of the new new features are:
- Support for variable-length strings!
- Use
using
PyTables. :)
Andrew Collette
On Mon, Feb 9, 2009 at 10:30 PM, Stephen Simmons wrote:
> Hi Andrew,
>
> Do you have any plans to support LZO compression in h5py?
>
> I have lots of LZO-compressed datasets created with PyTables.
> There's a real barrier to using both h5py a
Thanks, Ondrej. For the record, h5py is designed to provide a
"NumPy-like" interface to HDF5, along with a near-complete wrapping of
the low-level HDF5 C API. It has none of the database-like features
of PyTables. The FAQ entry has more info.
Andrew Collette
On Mon, Feb 9, 2009
=
Announcing HDF5 for Python (h5py) 1.1
=
What is h5py?
-
HDF5 for Python (h5py) is a general-purpose Python interface to the
Hierarchical Data Format library, version 5. HDF5 is a versatile,
mature scientific so
as it means
that the dtype doesn't "round trip"; I can't even use use astype as it
complains about a shape mismatch. How can I create an array in a
manner that preserves the dtype array information? Or is there a way
to take an existing array of the correct shape and "
Hi,
I get identical results for both shapes now; I manually removed the
"numexpr-1.1.1.dev-py2.5-linux-i686.egg" folder in site-packages and
reinstalled. I suppose there must have been a stale set of files
somewhere.
Andrew Collette
On Wed, Jan 21, 2009 at 3:41 AM, Francesc Alted
ted wrote:
> A Tuesday 20 January 2009, Andrew Collette escrigué:
>> Hi Francesc,
>>
>> Looks like a cool project! However, I'm not able to achieve the
>> advertised speed-ups. I wrote a simple script to try three
>> approaches to this kind of problem:
70319
(100, 100, 100) i4 (average of 10 runs)
Simple: 0.206279683113
Numexpr: 0.210431909561
Chunked: 0.182894086838
FYI, the current tar file (1.1-1) has a glitch related to the VERSION
file; I added to the bug report at google code.
Andrew Collette
On Fri, J
gh it could use
better documentation:
http://h5py.alfven.org/docs/guide/hl.html#h5py.highlevel.Group.create_dataset
Like other checksums, fletcher32 provides error-detection but not
error-correction. You'll still need to throw away data which can't be
read. However, I believe tha
any plans to add lzo compression support, in addition to
> gzip? This is a feature I used a lot in PyTables.
>
> Andrew Collette wrote:
> > =
> > Announcing HDF5 for Python (h5py) 1.0
> > ==
Just FYI, the Windows installer for 1.0 is now posted at
h5py.googlecode.com after undergoing some final testing.
Thanks for trying 0.3.0... too bad about matlab.
Andrew
On Mon, 2008-12-01 at 21:53 -0500, [EMAIL PROTECTED] wrote:
> >Requires
> >
> >
> >* UNIX-like platform (Linux or Mac
=
Announcing HDF5 for Python (h5py) 1.0
=
What is h5py?
-
HDF5 for Python (h5py) is a general-purpose Python interface to the
Hierarchical Data Format library, version 5. HDF5 is a versatile,
mature scientific so
56 matches
Mail list logo