@@ -662,4 +662,152 @@ def XeGPU_UpdateOffsetOp: XeGPU_Op<"update_offset",
}];
}
+def XeGPU_DpasOp : XeGPU_Op<"dpas", [Pure, AllElementTypesMatch<["lhs",
"rhs"]>]> {
+ let summary = "It performs mma computation";
+
+ let description = [{DPAS performs matrix multiplication on matrix A of `mxk`
+size, B of `kxn` size, and accumulate on matrix C of `mxn` to the same size
+matrix , `m=8`, `n=16` and `k=8 * 32/bit_width_of_elem_type`. So for fp16
+data type, the matrices are `A: vector<8x16xf16>`, `B: vector<16x16xf16>`,
+and `C/D: vector<8x16xf32>`. Besides the matrix size requirements, DPAS
+also requires A and B to be loaded with the required data layout.
Specially,
+VNNI layout is required for B operand. It is achieved via setting
`vnni_axis = 0`
+of the corresponding `load_nd` operator. To keep both operands as 3D
vector,
+operand A is loaded via setting `vnni_axis = 1` without impacting the
+physical layouts change in register. Due to the VNNI transformation, A and
B operands
+are represented as 3D vector, with the last dimension representing the
VNNI factor,
+which is computed as `32/bit_width_of_elem_type`. Therefore, `A:
vector<8x16xf16>`
+is represented as `A: vector<4x8x2xf16>`, and `B:vector<16x16xf16>` is
+represented as `B: vector<8x16x2xf16>`.
+
+Note: on PVC, the hardware can perform load with VNN transformation when
data
+ element type is 16-bit or lower precision, taking 2 or 4 elements
from
+ the first dimension and inserted into the newly added innermost
dimension.
+ }];
+
+ let arguments = (ins
+XeGPU_DpasOpType : $lhs,
+XeGPU_DpasOpType : $rhs,
+Optional: $acc);
+ let results = (outs XeGPU_Vector2DType: $result);
+
+ let extraClassDeclaration = [{
+VectorType getLhsType() {
+ return getLhs().getType();
+}
+
+VectorType getRhsType() {
+ return getRhs().getType();
+}
+
+VectorType getAccType() {
+ if (getAcc())
+return getAcc().getType();
+ return {};
+}
+
+VectorType getResultType() {
+ return getResult().getType();
+}
+ }];
+
+ let assemblyFormat = [{
+$lhs `,` $rhs (`,` $acc^)? attr-dict `:` type($lhs)`,` type($rhs) (`,`
type($acc)^)? `->` type($result)
+ }];
+
+ let hasVerifier = 1;
+}
+
+def XeGPU_AtomicRMWOp: XeGPU_Op<"atomic_rmw", [Pure,
+ AllElementTypesMatch<["tensorDesc", "value", "result"]>,
+ AllShapesMatch<["tensorDesc", "mask", "value", "result"]>]> {
+ let summary = "A ready-modify-write operation. ";
+
+ let description = [{
+`AtomicRMWOp` has same semantic to `memref.atomic_rmw`, except that
+it work on a `TensorDescType` object while `memref.atomic_rmw` works
+on a `MemRefType` object. It also has a `mask` variable, which has the
+same shape with `TensorDesc`, to enable or disable some data points of
+the `TensorDesc`.
+ }];
+
+ let arguments = (ins
+AtomicRMWKindAttr:$kind,
+XeGPU_TensorDesc:$tensorDesc,
+XeGPU_MaskType:$mask,
+XeGPU_ValueType:$value);
+
+ let results = (outs XeGPU_ValueType:$result);
+
+ let assemblyFormat = [{
+$kind $tensorDesc `,` $mask `,` $value attr-dict `:`
+type($tensorDesc) `,` type($mask) `,` type($value) `->` type($result)
+ }];
+}
+
+def XeGPU_AllocNbarrierOp: XeGPU_Op<"alloc_nbarrier", []> {
+ let summary = "It allocates a set of named barriers.";
+ let description = [{AllocNbarrier is to create a set of named barriers as
+ specified by `nbarrier_num`. Named barriers are workgroup level resources,
+and are shared by all threads in the workgroup. For example, there are
+up to 32 barriers (range 0-31) for each Xecore on PVC. A typical use case
adam-smnk wrote:
```suggestion
up to 32 barriers (range 0-31) for each XeCore on PVC. A typical use case
```
https://github.com/llvm/llvm-project/pull/88439
___
llvm-branch-commits mailing list
llvm-branch-commits@lists.llvm.org
https://lists.llvm.org/cgi-bin/mailman/listinfo/llvm-branch-commits